
Marcos A Neves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10412622/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Formulation and physicochemical stability of oil-in-water nanoemulsion loaded with α-terpineol as flavor oil using Quillaja saponins as natural emulsifier. Food Research International, 2022, 153, 110894.	6.2	3
2	Interfacial and emulsifying properties of purified glycyrrhizin and non-purified glycyrrhizin-rich extracts from liquorice root (Glycyrrhiza glabra). Food Chemistry, 2021, 337, 127949.	8.2	22
3	Emulsion Formation and Stabilizing Properties of Olive Oil Cake Crude Extracts. Processes, 2021, 9, 633.	2.8	9
4	Emulsifying Performance of Crude Surface-Active Extracts from Liquorice Root (Glycyrrhiza Glabra). ACS Food Science & Technology, 2021, 1, 1472-1480.	2.7	4
5	Formulation, physicochemical characterization, and anti- E. coli activity of food-grade nanoemulsions incorporating clove, cinnamon, and lavender essential oils. Food Chemistry, 2021, 359, 129963.	8.2	28
6	Peppermint and Myrtle nanoemulsions: Formulation, stability, and antimicrobial activity. LWT - Food Science and Technology, 2021, 152, 112377.	5.2	13
7	Comprehensive study of α-terpineol-loaded oil-in-water (O/W) nanoemulsion: interfacial property, formulation, physical and chemical stability. Npj Science of Food, 2021, 5, 31.	5.5	4
8	Comparative study of oil-in-water emulsions encapsulating fucoxanthin formulated by microchannel emulsification and high-pressure homogenization. Food Hydrocolloids, 2020, 108, 105977.	10.7	29
9	Fucoxanthin-Loaded Oil-in-Water Emulsion-Based Delivery Systems: Effects of Natural Emulsifiers on the Formulation, Stability, and Bioaccessibility. ACS Omega, 2019, 4, 10502-10509.	3.5	41
10	Ethyl oleate food-grade O/W emulsions loaded with apigenin: Insights to their formulation characteristics and physico-chemical stability. Food Research International, 2019, 116, 953-962.	6.2	19
11	Complex coacervates from gelatin and octenyl succinic anhydride modified kudzu starch: Insights of formulation and characterization. Food Hydrocolloids, 2019, 86, 70-77.	10.7	54
12	Gypenosides as natural emulsifiers for oil-in-water nanoemulsions loaded with astaxanthin: Insights of formulation, stability and release properties. Food Chemistry, 2018, 261, 322-328.	8.2	49
13	Formulation and characterization of astaxanthin-enriched nanoemulsions stabilized using ginseng saponins as natural emulsifiers. Food Chemistry, 2018, 255, 67-74.	8.2	70
14	Nanoencapsulation of Thymus capitatus essential oil: Formulation process, physical stability characterization and antibacterial efficiency monitoring. Industrial Crops and Products, 2018, 113, 414-421.	5.2	60
15	Formulation and characterization of water-in-oil nanoemulsions loaded with açaÃ-berry anthocyanins: Insights of degradation kinetics and stability evaluation of anthocyanins and nanoemulsions. Food Research International, 2018, 106, 542-548.	6.2	52
16	Microchannel emulsification: A promising technique towards encapsulation of functional compounds. Critical Reviews in Food Science and Nutrition, 2018, 58, 2364-2385.	10.3	18
17	Assessment of Oxidative Stability in Fish Oilâ€inâ€Water Emulsions: Effect of Emulsification Process, Droplet Size and Storage Temperature. Journal of Food Process Engineering, 2017, 40, e12316.	2.9	21
18	Encapsulation of Î ² -sitosterol plus Î ³ -oryzanol in O/W emulsions: Formulation characteristics and stability evaluation with microchannel emulsification. Food and Bioproducts Processing, 2017, 102, 222-232	3.6	23

MARCOS A NEVES

#	Article	IF	CITATIONS
19	Emerging Technologies for Recovery of Value-Added Components from Olive Leaves and Their Applications in Food/Feed Industries. Food and Bioprocess Technology, 2017, 10, 229-248.	4.7	63
20	Preparation characteristics of monodisperse oil-in-water emulsions by microchannel emulsification using different essential oils. LWT - Food Science and Technology, 2017, 84, 617-625.	5.2	17
21	Formulation and characterization of O/W emulsions stabilized using octenyl succinic anhydride modified kudzu starch. Carbohydrate Polymers, 2017, 176, 91-98.	10.2	48
22	Formulation of W/O/W emulsions loaded with short-chain fatty acid and their stability improvement by layer-by-layer deposition using dietary fibers. LWT - Food Science and Technology, 2017, 76, 344-350.	5.2	13
23	Quality preservation of deliberately contaminated milk using thyme free and nanoemulsified essential oils. Food Chemistry, 2017, 217, 726-734.	8.2	84
24	Microchannel emulsification study on formulation and stability characterization of monodisperse oil-in-water emulsions encapsulating quercetin. Food Chemistry, 2016, 212, 27-34.	8.2	29
25	Simulation of oleuropein structural conformation in vacuum, water and triolein–water systems using molecular dynamics. Food Research International, 2016, 88, 79-90.	6.2	8
26	Formulation and stability assessment of ergocalciferol loaded oil-in-water nanoemulsions: Insights of emulsifiers effect on stabilization mechanism. Food Research International, 2016, 90, 320-327.	6.2	41
27	Effect of esterified oligosaccharides on the formation and stability of oil-in-water emulsions. Carbohydrate Polymers, 2016, 143, 44-50.	10.2	17
28	Formulation characteristics of triacylglycerol oil-in-water emulsions loaded with ergocalciferol using microchannel emulsification. RSC Advances, 2015, 5, 97151-97162.	3.6	23
29	Formulation of monodisperse oilâ€nâ€water emulsions loaded with ergocalciferol and cholecalciferol by microchannel emulsification: insights of production characteristics and stability. International Journal of Food Science and Technology, 2015, 50, 1807-1814.	2.7	18
30	Preparation and Characterization of Micro/Nano-emulsions Containing Functional Food Components. Japan Journal of Food Engineering, 2015, 16, 263-276.	0.3	14
31	Preparation of monodisperse aqueous microspheres containing high concentration of <scp>l</scp> -ascorbic acid by microchannel emulsification. Journal of Microencapsulation, 2015, 32, 570-577.	2.8	7
32	Monodisperse aqueous microspheres encapsulating high concentration of <scp>l</scp> -ascorbic acid: insights of preparation and stability evaluation from straight-through microchannel emulsification. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1852-1859.	1.3	11
33	Development of novel bioactives delivery systems by micro/nanotechnology. Current Opinion in Food Science, 2015, 1, 7-12.	8.0	25
34	Influence of electrolyte concentration on microchannel oil-in-water emulsification using differently charged surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 440, 79-86.	4.7	9
35	Formulation of monodisperse water-in-oil emulsions encapsulating calcium ascorbate and ascorbic acid 2-glucoside by microchannel emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459, 247-253.	4.7	15
36	Preparation of Monodisperse Food-Grade Oleuropein-Loaded W/O/W Emulsions Using Microchannel Emulsification and Evaluation of Their Storage Stability. Food and Bioprocess Technology, 2014, 7, 2014-2027.	4.7	42

MARCOS A NEVES

#	Article	IF	CITATIONS
37	Stability control of large oil droplets by layer-by-layer deposition using polyelectrolyte dietary fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 440, 2-9.	4.7	15
38	Monodisperse W/O/W emulsions encapsulating l-ascorbic acid: Insights on their formulation using microchannel emulsification and stability studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 458, 69-77.	4.7	48
39	Interfacial characteristics and microchannel emulsification of oleuropein-containing triglyceride oil–water systems. Food Research International, 2014, 62, 467-475.	6.2	32
40	Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery. Advanced Drug Delivery Reviews, 2013, 65, 1626-1663.	13.7	250
41	Preparation and Characterization of Water-in-Oil-in-Water Emulsions Containing a High Concentration ofL-Ascorbic Acid. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1171-1178.	1.3	22
42	Preparation and characterization of water-in-oil emulsions loaded with high concentration of l-ascorbic acid. LWT - Food Science and Technology, 2013, 51, 448-454.	5.2	37
43	Scaling-Up Microchannel Emulsification Foreseeing Novel Bioactives Delivery Systems. , 2013, , .		1
44	FORMULATION OF LIPID MICRO/NANODISPERSION SYSTEMS. , 2012, , 95-134.		4
45	Effect of Temperature on Production of Soybean Oil-in-Water Emulsions by Microchannel Emulsification Using Different Emulsifiers. Food Science and Technology Research, 2011, 17, 77-86.	0.6	18
46	Encapsulation of Lipophilic Bioactive Molecules by Microchannel Emulsification. Food Biophysics, 2008, 3, 126-131.	3.0	50
47	Formulation of Controlled Size PUFA-Loaded Oil-in-Water Emulsions by Microchannel Emulsification Using β-Carotene-Rich Palm Oil. Industrial & Engineering Chemistry Research, 2008, 47, 6405-6411.	3.7	43
48	Formulation and characterization of oil-in-water emulsions stabilized by gelatinized kudzu starch. International Journal of Food Properties, 0, , 1-13.	3.0	8
49	Enhancing the Formation and Stability of Oil-In-Water Emulsions Prepared by Microchannels Using Mixed Protein Emulsifiers. Frontiers in Nutrition, 0, 9, .	3.7	3