
Melissa C Southey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10411299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551, 92-94.	13.7	1,099
2	Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature Genetics, 2013, 45, 353-361.	9.4	960
3	Multiple newly identified loci associated with prostate cancer susceptibility. Nature Genetics, 2008, 40, 316-321.	9.4	796
4	Subtyping of Breast Cancer by Immunohistochemistry to Investigate a Relationship between Subtype and Short and Long Term Survival: A Collaborative Analysis of Data for 10,159 Cases from 12 Studies. PLoS Medicine, 2010, 7, e1000279.	3.9	764
5	Breast-Cancer Risk in Families with Mutations in <i>PALB2</i> . New England Journal of Medicine, 2014, 371, 497-506.	13.9	745
6	Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. American Journal of Human Genetics, 2019, 104, 21-34.	2.6	711
7	Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature Genetics, 2018, 50, 928-936.	9.4	652
8	Iron-Overload–Related Disease in <i>HFE</i> Hereditary Hemochromatosis. New England Journal of Medicine, 2008, 358, 221-230.	13.9	649
9	Associations of Breast Cancer Risk Factors With Tumor Subtypes: A Pooled Analysis From the Breast Cancer Association Consortium Studies. Journal of the National Cancer Institute, 2011, 103, 250-263.	3.0	596
10	A common coding variant in CASP8 is associated with breast cancer risk. Nature Genetics, 2007, 39, 352-358.	9.4	591
11	Breast Cancer Risk Genes — Association Analysis in More than 113,000 Women. New England Journal of Medicine, 2021, 384, 428-439.	13.9	532
12	A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nature Genetics, 2008, 40, 623-630.	9.4	514
13	Pathology of Breast and Ovarian Cancers among <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: Results from the Consortium of Investigators of Modifiers of <i>BRCA1</i> / <i>2</i> (CIMBA). Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 134-147.	1.1	513
14	Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nature Genetics, 2015, 47, 373-380.	9.4	513
15	Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45, 371-384.	9.4	493
16	Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nature Genetics, 2013, 45, 385-391.	9.4	492
17	Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nature Genetics, 2009, 41, 585-590.	9.4	434
18	Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants. Journal of the National Cancer Institute, 2015, 107, .	3.0	428

#	Article	IF	CITATIONS
19	Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nature Genetics, 2017, 49, 834-841.	9.4	426
20	Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nature Genetics, 2009, 41, 1116-1121.	9.4	389
21	Discovery of common and rare genetic risk variants for colorectal cancer. Nature Genetics, 2019, 51, 76-87.	9.4	377
22	Genome-wide association studies identify four ER negative–specific breast cancer risk loci. Nature Genetics, 2013, 45, 392-398.	9.4	374
23	Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nature Genetics, 2015, 47, 1294-1303.	9.4	357
24	Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature Genetics, 2017, 49, 680-691.	9.4	356
25	GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nature Genetics, 2013, 45, 362-370.	9.4	326
26	Heterogeneity of Breast Cancer Associations with Five Susceptibility Loci by Clinical and Pathological Characteristics. PLoS Genetics, 2008, 4, e1000054.	1.5	315
27	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	9.4	289
28	Colorectal and Other Cancer Risks for Carriers and Noncarriers From Families With a DNA Mismatch Repair Gene Mutation: A Prospective Cohort Study. Journal of Clinical Oncology, 2012, 30, 958-964.	0.8	286
29	Breast Cancer Risk From Modifiable and Nonmodifiable Risk Factors Among White Women in the United States. JAMA Oncology, 2016, 2, 1295.	3.4	285
30	A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer. Nature Genetics, 2011, 43, 1210-1214.	9.4	279
31	Multiple loci on 8q24 associated with prostate cancer susceptibility. Nature Genetics, 2009, 41, 1058-1060.	9.4	273
32	Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nature Genetics, 2011, 43, 785-791.	9.4	265
33	Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nature Genetics, 2020, 52, 572-581.	9.4	265
34	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	9.4	264
35	The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer. Breast Cancer Research, 2004, 6, R375-89.	2.2	255
36	Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk. PLoS Genetics, 2013, 9, e1003212.	1.5	244

#	Article	IF	CITATIONS
37	The histologic phenotypes of breast carcinoma occurring before age 40 years in women with and without BRCA1 or BRCA2 germline mutations. Cancer, 1998, 83, 2335-2345.	2.0	243
38	Metachronous colorectal cancer risk for mismatch repair gene mutation carriers: the advantage of more extensive colon surgery. Gut, 2011, 60, 950-957.	6.1	227
39	Functional Variants at the 11q13 Risk Locus for Breast Cancer Regulate Cyclin D1 Expression through Long-Range Enhancers. American Journal of Human Genetics, 2013, 92, 489-503.	2.6	201
40	Use of Molecular Tumor Characteristics to Prioritize Mismatch Repair Gene Testing in Early-Onset Colorectal Cancer. Journal of Clinical Oncology, 2005, 23, 6524-6532.	0.8	194
41	Rare variants in the ATMgene and risk of breast cancer. Breast Cancer Research, 2011, 13, R73.	2.2	188
42	A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nature Genetics, 2018, 50, 968-978.	9.4	184
43	Genetic insights into biological mechanisms governing human ovarian ageing. Nature, 2021, 596, 393-397.	13.7	183
44	Identification of nine new susceptibility loci for endometrial cancer. Nature Communications, 2018, 9, 3166.	5.8	178
45	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COGS. Journal of Medical Genetics, 2016, 53, 800-811.	1.5	174
46	A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. Human Molecular Genetics, 2012, 21, 5373-5384.	1.4	168
47	Rare, Evolutionarily Unlikely Missense Substitutions in ATM Confer Increased Risk of Breast Cancer. American Journal of Human Genetics, 2009, 85, 427-446.	2.6	165
48	<i>CHEK2</i> *1100delC Heterozygosity in Women With Breast Cancer Associated With Early Death, Breast Cancer–Specific Death, and Increased Risk of a Second Breast Cancer. Journal of Clinical Oncology, 2012, 30, 4308-4316.	0.8	162
49	Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discovery, 2016, 6, 1052-1067.	7.7	157
50	BRCA2 Mutation-associated Breast Cancers Exhibit a Distinguishing Phenotype Based on Morphology and Molecular Profiles From Tissue Microarrays. American Journal of Surgical Pathology, 2007, 31, 121-128.	2.1	156
51	Adaptive evolution of the tumour suppressor BRCA1 in humans and chimpanzees. Nature Genetics, 2000, 25, 410-413.	9.4	153
52	Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Human Molecular Genetics, 2011, 20, 3289-3303.	1.4	152
53	Age- and Tumor Subtype–Specific Breast Cancer Risk Estimates for <i>CHEK2</i> *1100delC Carriers. Journal of Clinical Oncology, 2016, 34, 2750-2760.	0.8	152
54	Cancer Risks For Mismatch Repair Gene Mutation Carriers: A Population-Based Early Onset Case-Family Study. Clinical Gastroenterology and Hepatology, 2006, 4, 489-498.	2.4	151

#	Article	IF	CITATIONS
55	Familial Risks, Early-Onset Breast Cancer, and BRCA1 and BRCA2 Germline Mutations. Journal of the National Cancer Institute, 2003, 95, 448-457.	3.0	150
56	Constitutional Methylation of the <i>BRCA1</i> Promoter Is Specifically Associated with <i>BRCA1</i> Mutation-Associated Pathology in Early-Onset Breast Cancer. Cancer Prevention Research, 2011, 4, 23-33.	0.7	147
57	Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nature Genetics, 2014, 46, 1233-1238.	9.4	147
58	Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer. Nature Communications, 2013, 4, 1628.	5.8	144
59	Evidence of Gene–Environment Interactions between Common Breast Cancer Susceptibility Loci and Established Environmental Risk Factors. PLoS Genetics, 2013, 9, e1003284.	1.5	136
60	Breast Cancer Prognosis in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers: An International Prospective Breast Cancer Family Registry Population-Based Cohort Study. Journal of Clinical Oncology, 2012, 30, 19-26.	0.8	134
61	Oral Contraceptive Use and Risk of Early-Onset Breast Cancer in Carriers and Noncarriers of BRCA1 and BRCA2 Mutations. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 350-356.	1.1	133
62	Colorectal carcinomas with KRAS mutation are associated with distinctive morphological and molecular features. Modern Pathology, 2013, 26, 825-834.	2.9	126
63	Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nature Genetics, 2016, 48, 374-386.	9.4	125
64	HFE C282Y homozygotes are at increased risk of breast and colorectal cancer. Hepatology, 2010, 51, 1311-1318.	3.6	123
65	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	9.4	120
66	A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Human Molecular Genetics, 2013, 22, 408-415.	1.4	118
67	Genetically Predicted Body Mass Index and Breast Cancer Risk: Mendelian Randomization Analyses of Data from 145,000 Women of European Descent. PLoS Medicine, 2016, 13, e1002105.	3.9	118
68	PIK3CA Activating Mutation in Colorectal Carcinoma: Associations with Molecular Features and Survival. PLoS ONE, 2013, 8, e65479.	1.1	117
69	Cumulative Burden of Colorectal Cancer–Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer. Gastroenterology, 2020, 158, 1274-1286.e12.	0.6	110
70	Common variants in ZNF365 are associated with both mammographic density and breast cancer risk. Nature Genetics, 2011, 43, 185-187.	9.4	109
71	Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk. Nature Communications, 2014, 5, 5303.	5.8	109
72	Combined genetic and splicing analysis of BRCA1 c.[594-2A>C; 641A>G] highlights the relevance of naturally occurring in-frame transcripts for developing disease gene variant classification algorithms. Human Molecular Genetics, 2016, 25, 2256-2268.	1.4	106

#	Article	IF	CITATIONS
73	Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk. PLoS Genetics, 2013, 9, e1003173.	1.5	105
74	Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation. Nature Communications, 2014, 5, 4999.	5.8	105
75	A PALB2 mutation associated with high risk of breast cancer. Breast Cancer Research, 2010, 12, R109.	2.2	102
76	<i>HFE</i> C282Y/H63D compound heterozygotes are at low risk of hemochromatosis-related morbidity. Hepatology, 2009, 50, 94-101.	3.6	101
77	Common Breast Cancer Susceptibility Variants in <i>LSP1</i> and <i>RAD51L1</i> Are Associated with Mammographic Density Measures that Predict Breast Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1156-1166.	1.1	101
78	19p13.1 Is a Triple-Negative–Specific Breast Cancer Susceptibility Locus. Cancer Research, 2012, 72, 1795-1803.	0.4	100
79	Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations. Cancer Research, 2016, 76, 5103-5114.	0.4	100
80	Risk of Estrogen Receptor–Positive and –Negative Breast Cancer and Single–Nucleotide Polymorphism 2q35-rs13387042. Journal of the National Cancer Institute, 2009, 101, 1012-1018.	3.0	99
81	Rare key functional domain missense substitutions in MRE11A, RAD50, and NBNcontribute to breast cancer susceptibility: results from a Breast Cancer Family Registry case-control mutation-screening study. Breast Cancer Research, 2014, 16, R58.	2.2	99
82	Height and Breast Cancer Risk: Evidence From Prospective Studies and Mendelian Randomization. Journal of the National Cancer Institute, 2015, 107, djv219.	3.0	99
83	Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus: Putative Functional Variants Differentially Bind FOXA1 and E2F1. American Journal of Human Genetics, 2013, 93, 1046-1060.	2.6	98
84	Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31. Nature Communications, 2013, 4, 1627.	5.8	98
85	After BRCA1 and BRCA2—What Next? Multifactorial Segregation Analyses of Three-Generation, Population-Based Australian Families Affected by Female Breast Cancer. American Journal of Human Genetics, 2001, 68, 420-431.	2.6	97
86	Ethnicity and Risk for Colorectal Cancers Showing Somatic <i>BRAF</i> V600E Mutation or CpG Island Methylator Phenotype. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 1774-1780.	1.1	96
87	Breast Cancer Risk Prediction Using Clinical Models and 77 Independent Risk-Associated SNPs for Women Aged Under 50 Years: Australian Breast Cancer Family Registry. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 359-365.	1.1	96
88	Causal effect of smoking on DNA methylation in peripheral blood: a twin and family study. Clinical Epigenetics, 2018, 10, 18.	1.8	95
89	No evidence that protein truncating variants in <i>BRIP1</i> are associated with breast cancer risk: implications for gene panel testing. Journal of Medical Genetics, 2016, 53, 298-309.	1.5	94
90	Epigenome-wide methylation in DNA from peripheral blood as a marker of risk for breast cancer. Breast Cancer Research and Treatment, 2014, 148, 665-673.	1.1	93

#	Article	IF	CITATIONS
91	Penetrance Analysis of the <i>PALB2</i> c.1592delT Founder Mutation. Clinical Cancer Research, 2008, 14, 4667-4671.	3.2	90
92	Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Human Molecular Genetics, 2014, 23, 6616-6633.	1.4	90
93	Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nature Communications, 2019, 10, 1741.	5.8	90
94	Cancer Risks Associated With <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variants. Journal of Clinical Oncology, 2022, 40, 1529-1541.	0.8	90
95	Joint associations of a polygenic risk score and environmental risk factors for breast cancer in the Breast Cancer Association Consortium. International Journal of Epidemiology, 2018, 47, 526-536.	0.9	88
96	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	5.8	88
97	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	5.8	88
98	The Natural History of Serum Iron Indices for HFE C282Y Homozygosity Associated With Hereditary Hemochromatosis. Gastroenterology, 2008, 135, 1945-1952.	0.6	86
99	Common Genetic Variants and Modification of Penetrance of BRCA2-Associated Breast Cancer. PLoS Genetics, 2010, 6, e1001183.	1.5	85
100	Population-Based Estimate of the Contribution of <i>TP53</i> Mutations to Subgroups of Early-Onset Breast Cancer: Australian Breast Cancer Family Study. Cancer Research, 2010, 70, 4795-4800.	0.4	84
101	Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast Cancer Research, 2010, 12, R110.	2.2	82
102	Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genetics in Medicine, 2020, 22, 1653-1666.	1.1	82
103	Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis. International Journal of Epidemiology, 2019, 48, 795-806.	0.9	81
104	The role of genetic breast cancer susceptibility variants as prognostic factors. Human Molecular Genetics, 2012, 21, 3926-3939.	1.4	80
105	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	5.8	78
106	A Genome-wide Association Study of Early-Onset Breast Cancer Identifies <i>PFKM</i> as a Novel Breast Cancer Gene and Supports a Common Genetic Spectrum for Breast Cancer at Any Age. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 658-669.	1.1	77
107	BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. Journal of the National Cancer Institute, 2016, 108, djv315.	3.0	77
108	Fine-Scale Mapping of the 5q11.2 Breast Cancer Locus Reveals at Least Three Independent Risk Variants Regulating MAP3K1. American Journal of Human Genetics, 2015, 96, 5-20.	2.6	76

#	Article	IF	CITATIONS
109	Heritable DNA methylation marks associated with susceptibility to breast cancer. Nature Communications, 2018, 9, 867.	5.8	76
110	<i>BRCA2</i> Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer. Cancer Research, 2017, 77, 2789-2799.	0.4	75
111	Comparison of DNA- and RNA-Based Methods for Detection of TruncatingBRCA1 Mutations. Human Mutation, 2002, 20, 65-73.	1.1	74
112	Common Genetic Variants Associated with Breast Cancer and Mammographic Density Measures That Predict Disease. Cancer Research, 2010, 70, 1449-1458.	0.4	74
113	Rare, evolutionarily unlikely missense substitutions in CHEK2contribute to breast cancer susceptibility: results from a breast cancer family registry case-control mutation-screening study. Breast Cancer Research, 2011, 13, R6.	2.2	74
114	Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Research, 2011, 13, R110.	2.2	71
115	Associations of common variants at 1p11.2 and 14q24.1 (RAD51L1) with breast cancer risk and heterogeneity by tumor subtype: findings from the Breast Cancer Association Consortiumâ€. Human Molecular Genetics, 2011, 20, 4693-4706.	1.4	71
116	Adult body mass index and risk of ovarian cancer by subtype: a Mendelian randomization study. International Journal of Epidemiology, 2016, 45, 884-895.	0.9	71
117	Are the so-called low penetrance breast cancer genes, ATM, BRIP1, PALB2 and CHEK2, high risk for women with strong family histories?. Breast Cancer Research, 2008, 10, 208.	2.2	70
118	Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Human Molecular Genetics, 2015, 24, 5589-5602.	1.4	67
119	Genetic modifiers of CHEK2*1100delC-associated breast cancer risk. Genetics in Medicine, 2017, 19, 599-603.	1.1	67
120	Body size and risk for colorectal cancers showing BRAF mutations or microsatellite instability: a pooled analysis. International Journal of Epidemiology, 2012, 41, 1060-1072.	0.9	65
121	Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer. Nature Communications, 2015, 6, 8234.	5.8	63
122	Refinement of the basis and impact of common 11q23.1 variation to the risk of developing colorectal cancer. Human Molecular Genetics, 2008, 17, 3720-3727.	1.4	61
123	A novel association between a SNP in <i>CYBRD1</i> and serum ferritin levels in a cohort study of <i>HFE</i> hereditary haemochromatosis. British Journal of Haematology, 2009, 147, 140-149.	1.2	61
124	Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation. American Journal of Human Genetics, 2016, 99, 903-911.	2.6	59
125	Is uptake of genetic testing for colorectal cancer influenced by knowledge of insurance implications?. Medical Journal of Australia, 2009, 191, 255-258.	0.8	58
126	Five Polymorphisms and Breast Cancer Risk: Results from the Breast Cancer Association Consortium. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 1610-1616.	1.1	57

#	Article	IF	CITATIONS
127	Identification of Novel Genetic Markers of Breast Cancer Survival. Journal of the National Cancer Institute, 2015, 107, .	3.0	56
128	Risk Analysis of Prostate Cancer in PRACTICAL, a Multinational Consortium, Using 25 Known Prostate Cancer Susceptibility Loci. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1121-1129.	1.1	56
129	Novel Associations between Common Breast Cancer Susceptibility Variants and Risk-Predicting Mammographic Density Measures. Cancer Research, 2015, 75, 2457-2467.	0.4	55
130	Mammographic Breast Density and Breast Cancer: Evidence of a Shared Genetic Basis. Cancer Research, 2012, 72, 1478-1484.	0.4	54
131	Prediction of individual genetic risk to prostate cancer using a polygenic score. Prostate, 2015, 75, 1467-1474.	1.2	54
132	A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Research, 2018, 78, 5419-5430.	0.4	54
133	ELAC2/HPC2 Polymorphisms, Prostate-Specific Antigen Levels, and Prostate Cancer. Journal of the National Cancer Institute, 2003, 95, 818-824.	3.0	53
134	Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium. Human Molecular Genetics, 2014, 23, 6096-6111.	1.4	53
135	Breast cancer risk prediction using a polygenic risk score in the familial setting: a prospective study from the Breast Cancer Family Registry and kConFab. Genetics in Medicine, 2017, 19, 30-35.	1.1	53
136	BRCA1 and BRCA2 mutation carriers in the Breast Cancer Family Registry: an open resource for collaborative research. Breast Cancer Research and Treatment, 2009, 116, 379-386.	1.1	52
137	Genetically predicted longer telomere length is associated with increased risk of B-cell lymphoma subtypes. Human Molecular Genetics, 2016, 25, 1663-1676.	1.4	52
138	Genome-wide association study of germline variants and breast cancer-specific mortality. British Journal of Cancer, 2019, 120, 647-657.	2.9	52
139	A high-plex PCR approach for massively parallel sequencing. BioTechniques, 2013, 55, 69-74.	0.8	51
140	Fineâ€scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer. International Journal of Cancer, 2016, 139, 1303-1317.	2.3	51
141	Comparison of 6q25 Breast Cancer Hits from Asian and European Genome Wide Association Studies in the Breast Cancer Association Consortium (BCAC). PLoS ONE, 2012, 7, e42380.	1.1	51
142	Pathology of Tumors Associated With Pathogenic Germline Variants in 9 Breast Cancer Susceptibility Genes. JAMA Oncology, 2022, 8, e216744.	3.4	51
143	Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk. Human Molecular Genetics, 2015, 24, 1478-1492.	1.4	50
144	Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation. Nature Communications, 2016, 7, 10979.	5.8	50

#	Article	IF	CITATIONS
145	Identification of fifteen novel germline variants in the <i>BRCA1</i> 3′UTR reveals a variant in a breast cancer case that introduces a functional <i>miR-103</i> target site. Human Mutation, 2012, 33, 1665-1675.	1.1	49
146	MicroRNA Related Polymorphisms and Breast Cancer Risk. PLoS ONE, 2014, 9, e109973.	1.1	49
147	Association Between a Germline OCA2 Polymorphism at Chromosome 15q13.1 and Estrogen Receptor–Negative Breast Cancer Survival. Journal of the National Cancer Institute, 2010, 102, 650-662.	3.0	48
148	A role for XRCC2 gene polymorphisms in breast cancer risk and survival. Journal of Medical Genetics, 2011, 48, 477-484.	1.5	47
149	Common Variants at the 19p13.1 and <i>ZNF365</i> Loci Are Associated with ER Subtypes of Breast Cancer and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 645-657.	1.1	47
150	Tumor testing to identify lynch syndrome in two Australian colorectal cancer cohorts. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 427-438.	1.4	47
151	Combined Associations of a Polygenic Risk Score and Classical Risk Factors With Breast Cancer Risk. Journal of the National Cancer Institute, 2021, 113, 329-337.	3.0	45
152	Rare Mutations in <i>RINT1</i> Predispose Carriers to Breast and Lynch Syndrome–Spectrum Cancers. Cancer Discovery, 2014, 4, 804-815.	7.7	44
153	Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk. PLoS ONE, 2015, 10, e0128106.	1.1	44
154	Estrogen Receptor Polymorphism at Codon 325 and Risk of Breast Cancer in Women Before Age Forty. Journal of the National Cancer Institute, 1998, 90, 532-536.	3.0	43
155	AfterhMSH2 andhMLH1?what next? Analysis of three-generational, population-based, early-onset colorectal cancer families. International Journal of Cancer, 2002, 102, 166-171.	2.3	43
156	Genetic predisposition to ductal carcinoma in situ of the breast. Breast Cancer Research, 2016, 18, 22.	2.2	43
157	Reproductive profiles and risk of breast cancer subtypes: a multi-center case-only study. Breast Cancer Research, 2017, 19, 119.	2.2	43
158	Prevalence of PALB2 mutations in Australasian multiple-case breast cancer families. Breast Cancer Research, 2013, 15, R17.	2.2	42
159	Log odds of carrying an Ancestral Mutation in BRCA1 or BRCA2for a Defined personal and family history in an Ashkenazi Jewish woman (LAMBDA). Breast Cancer Research, 2003, 5, R206-16.	2.2	40
160	PALB2 and breast cancer: ready for clinical translation!. The Application of Clinical Genetics, 2013, 6, 43.	1.4	40
161	Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci. Human Molecular Genetics, 2015, 24, 3595-3607.	1.4	40
162	Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2. Human Molecular Genetics, 2015, 24, 2966-2984.	1.4	40

#	Article	IF	CITATIONS
163	Role of tumour molecular and pathology features to estimate colorectal cancer risk for first-degree relatives. Gut, 2015, 64, 101-110.	6.1	40
164	Germline Sequencing DNA Repair Genes in 5545 Men With Aggressive and Nonaggressive Prostate Cancer. Journal of the National Cancer Institute, 2021, 113, 616-625.	3.0	40
165	A Systematic Approach to Analysing Gene-Gene Interactions: Polymorphisms at the Microsomal Epoxide Hydrolase EPHX and Glutathione S-transferase GSTM1, GSTT1, and GSTP1 Loci and Breast Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 769-774.	1.1	39
166	Genetic Predisposition to In Situ and Invasive Lobular Carcinoma of the Breast. PLoS Genetics, 2014, 10, e1004285.	1.5	39
167	Homologous recombination DNA repair defects in PALB2-associated breast cancers. Npj Breast Cancer, 2019, 5, 23.	2.3	39
168	Breast Cancer Polygenic Risk Score and Contralateral Breast Cancer Risk. American Journal of Human Genetics, 2020, 107, 837-848.	2.6	39
169	Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk. Human Molecular Genetics, 2015, 24, 285-298.	1.4	38
170	Rare Germline Variants in ATM Predispose to Prostate Cancer: A PRACTICAL Consortium Study. European Urology Oncology, 2021, 4, 570-579.	2.6	38
171	Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression. American Journal of Human Genetics, 2015, 97, 22-34.	2.6	37
172	Genome-wide association of familial prostate cancer cases identifies evidence for a rare segregating haplotype at 8q24.21. Human Genetics, 2016, 135, 923-938.	1.8	37
173	Evidence of a genetic link between endometriosis and ovarian cancer. Fertility and Sterility, 2016, 105, 35-43.e10.	0.5	37
174	Explaining Variance in the <i>Cumulus</i> Mammographic Measures That Predict Breast Cancer Risk: A Twins and Sisters Study. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 2395-2403.	1.1	36
175	11q13 is a susceptibility locus for hormone receptor positive breast cancer. Human Mutation, 2012, 33, 1123-1132.	1.1	35
176	Investigation of geneâ€environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors. International Journal of Cancer, 2015, 136, E685-96.	2.3	34
177	Candidate locus analysis of the TERT–CLPTM1L cancer risk region on chromosome 5p15 identifies multiple independent variants associated with endometrial cancer risk. Human Genetics, 2015, 134, 231-245.	1.8	34
178	HLA Class I and II Diversity Contributes to the Etiologic Heterogeneity of Non-Hodgkin Lymphoma Subtypes. Cancer Research, 2018, 78, 4086-4096.	0.4	34
179	Blood DNA methylation and breast cancer risk: a meta-analysis of four prospective cohort studies. Breast Cancer Research, 2019, 21, 62.	2.2	34
180	Missense Variants in <i>ATM</i> in 26,101 Breast Cancer Cases and 29,842 Controls. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2143-2151.	1.1	33

#	Article	IF	CITATIONS
181	Using SNP genotypes to improve the discrimination of a simple breast cancer risk prediction model. Breast Cancer Research and Treatment, 2013, 139, 887-896.	1.1	33
182	Association of breast cancer risk <i>loci</i> with breast cancer survival. International Journal of Cancer, 2015, 137, 2837-2845.	2.3	33
183	An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. Human Molecular Genetics, 2016, 25, 3863-3876.	1.4	33
184	Germline mutations in <i>PMS2</i> and <i>MLH1</i> in individuals with solitary loss of PMS2 expression in colorectal carcinomas from the Colon Cancer Family Registry Cohort. BMJ Open, 2016, 6, e010293.	0.8	33
185	A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46 450 cases and 42 461 controls from the breast cancer association consortium. Human Molecular Genetics, 2014, 23, 1934-1946.	1.4	32
186	Transcriptomeâ€wide association study of breast cancer risk by estrogenâ€receptor status. Genetic Epidemiology, 2020, 44, 442-468.	0.6	32
187	Identification of a novel percent mammographic density locus at 12q24. Human Molecular Genetics, 2012, 21, 3299-3305.	1.4	31
188	Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21. Oncotarget, 2016, 7, 80140-80163.	0.8	31
189	Joint association of mammographic density adjusted for age and body mass index and polygenic risk score with breast cancer risk. Breast Cancer Research, 2019, 21, 68.	2.2	31
190	A network analysis to identify mediators of germline-driven differences in breast cancer prognosis. Nature Communications, 2020, 11, 312.	5.8	30
191	Prostate cancer segregation analyses using 4390 families from UK and Australian populationâ€based studies. Genetic Epidemiology, 2010, 34, 42-50.	0.6	28
192	No evidence of MMTV-like env sequences in specimens from the Australian Breast Cancer Family Study. Breast Cancer Research and Treatment, 2011, 125, 229-235.	1.1	28
193	Identification of New Genetic Susceptibility Loci for Breast Cancer Through Consideration of Geneâ€Environment Interactions. Genetic Epidemiology, 2014, 38, 84-93.	0.6	28
194	Network-Based Integration of GWAS and Gene Expression Identifies a <i>HOX</i> -Centric Network Associated with Serous Ovarian Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1574-1584.	1.1	28
195	Genetic overlap between autoimmune diseases and nonâ€Hodgkin lymphoma subtypes. Genetic Epidemiology, 2019, 43, 844-863.	0.6	28
196	The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. Npj Breast Cancer, 2019, 5, 38.	2.3	28
197	Two-stage Study of Familial Prostate Cancer by Whole-exome Sequencing and Custom Capture Identifies 10 Novel Genes Associated with the Risk of Prostate Cancer. European Urology, 2021, 79, 353-361.	0.9	28
198	Low somatic K-ras mutation frequency in colorectal cancer diagnosed under the age of 45 years. European Journal of Cancer, 2006, 42, 1357-1361.	1.3	27

#	Article	IF	CITATIONS
199	Confirmation of 5p12 As a Susceptibility Locus for Progesterone-Receptor–Positive, Lower Grade Breast Cancer. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 2222-2231.	1.1	27
200	PALB2: research reaching to clinical outcomes for women with breast cancer. Hereditary Cancer in Clinical Practice, 2016, 14, 9.	0.6	27
201	Lifetime alcohol intake is associated with an increased risk of <i>KRAS</i> + and <i>BRAF</i> â€i <i>KRAS</i> â€ibut not <i>BRAF+</i> colorectal cancer. International Journal of Cancer, 2017, 140, 1485-1493.	2.3	27
202	Common germline polymorphisms associated with breast cancer-specific survival. Breast Cancer Research, 2015, 17, 58.	2.2	26
203	Genome-wide DNA methylation assessment of †BRCA1-like' early-onset breast cancer: Data from the Australian Breast Cancer Family Registry. Experimental and Molecular Pathology, 2018, 105, 404-410.	0.9	26
204	RAD51 and Breast Cancer Susceptibility: No Evidence for Rare Variant Association in the Breast Cancer Family Registry Study. PLoS ONE, 2012, 7, e52374.	1.1	26
205	RAD51B in Familial Breast Cancer. PLoS ONE, 2016, 11, e0153788.	1.1	26
206	Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC). Journal of Genetics and Genome Research, 2015, 2, .	0.3	25
207	CYP17genetic polymorphism, breast cancer, and breast cancer risk factors: Australian Breast Cancer Family Study. Breast Cancer Research, 2005, 7, R513-21.	2.2	24
208	Variants in the Prostate-Specific Antigen (PSA) Gene and Prostate Cancer Risk, Survival, and Circulating PSA. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 1142-1147.	1.1	24
209	Common variants at the <i>CHEK2</i> gene locus and risk of epithelial ovarian cancer. Carcinogenesis, 2015, 36, 1341-1353.	1.3	24
210	Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1680-1691.	1.1	24
211	Mammographic density defined by higher than conventional brightness thresholds better predicts breast cancer risk. International Journal of Epidemiology, 2017, 46, dyw212.	0.9	24
212	Cirrus: An Automated Mammography-Based Measure of Breast Cancer Risk Based on Textural Features. JNCI Cancer Spectrum, 2018, 2, pky057.	1.4	24
213	Prediction and clinical utility of a contralateral breast cancer risk model. Breast Cancer Research, 2019, 21, 144.	2.2	24
214	Identification of new genetic risk factors for prostate cancer. Asian Journal of Andrology, 2009, 11, 49-55.	0.8	23
215	Genome-wide association study of subtype-specific epithelial ovarian cancer risk alleles using pooled DNA. Human Genetics, 2014, 133, 481-497.	1.8	23
216	Mutation screening of PALB2 in clinically ascertained families from the Breast Cancer Family Registry. Breast Cancer Research and Treatment, 2015, 149, 547-554.	1.1	23

#	Article	IF	CITATIONS
217	Polygenic risk modeling for prediction of epithelial ovarian cancer risk. European Journal of Human Genetics, 2022, 30, 349-362.	1.4	23
218	Regressive logistic and proportional hazards disease models for within-family analyses of measured genotypes, with application to a CYP17 polymorphism and breast cancer. Genetic Epidemiology, 2003, 24, 161-172.	0.6	22
219	Epithelialâ€Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk. Genetic Epidemiology, 2015, 39, 689-697.	0.6	22
220	Candidate Genetic Modifiers for Breast and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 308-316.	1.1	22
221	SNP rs16906252C>T Is an Expression and Methylation Quantitative Trait Locus Associated with an Increased Risk of Developing <i>MGMT</i> -Methylated Colorectal Cancer. Clinical Cancer Research, 2016, 22, 6266-6277.	3.2	22
222	Interval breast cancer risk associations with breast density, family history and breast tissue aging. International Journal of Cancer, 2020, 147, 375-382.	2.3	22
223	Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry. Cancer Causes and Control, 2016, 27, 679-693.	0.8	21
224	Somatic mutations of the coding microsatellites within the beta-2-microglobulin gene in mismatch repair-deficient colorectal cancers and adenomas. Familial Cancer, 2018, 17, 91-100.	0.9	21
225	Family history of breast cancer and all-cause mortality after breast cancer diagnosis in the Breast Cancer Family Registry. Breast Cancer Research and Treatment, 2009, 117, 167-176.	1.1	20
226	SNP-SNP interaction analysis of NF-κB signaling pathway on breast cancer survival. Oncotarget, 2015, 6, 37979-37994.	0.8	20
227	Gene–environment interactions involving functional variants: Results from the Breast Cancer Association Consortium. International Journal of Cancer, 2017, 141, 1830-1840.	2.3	20
228	A threeâ€protein biomarker panel assessed in diagnostic tissue predicts death from prostate cancer for men with localized disease. Cancer Medicine, 2014, 3, 1266-1274.	1.3	19
229	A comprehensive evaluation of interaction between genetic variants and use of menopausal hormone therapy on mammographic density. Breast Cancer Research, 2015, 17, 110.	2.2	19
230	Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs). Scientific Reports, 2016, 6, 32512.	1.6	19
231	The <i>BRCA2</i> c.68-7TÂ>ÂA variant is not pathogenic: A model for clinical calibration of spliceogenicity. Human Mutation, 2018, 39, 729-741.	1.1	19
232	A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nature Communications, 2021, 12, 1078.	5.8	19
233	Prospective Evaluation of the Addition of Polygenic Risk Scores to Breast Cancer Risk Models. JNCI Cancer Spectrum, 2021, 5, pkab021.	1.4	19
234	Breast cancer risks associated with missense variants in breast cancer susceptibility genes. Genome Medicine, 2022, 14, 51.	3.6	19

#	Article	IF	CITATIONS
235	Haplotype structure in Ashkenazi Jewish BRCA1 and BRCA2 mutation carriers. Human Genetics, 2011, 130, 685-699.	1.8	18
236	The potential value of sibling controls compared with population controls for association studies of lifestyle-related risk factors: an example from the Breast Cancer Family Registry. International Journal of Epidemiology, 2011, 40, 1342-1354.	0.9	18
237	Genome wide association study identifies a novel putative mammographic density locus at 1q12â€q21. International Journal of Cancer, 2015, 136, 2427-2436.	2.3	18
238	Genes associated with histopathologic features of triple negative breast tumors predict molecular subtypes. Breast Cancer Research and Treatment, 2016, 157, 117-131.	1.1	18
239	DNA methylation-based biological age, genome-wide average DNA methylation, and conventional breast cancer risk factors. Scientific Reports, 2019, 9, 15055.	1.6	18
240	Stochastic Epigenetic Mutations Are Associated with Risk of Breast Cancer, Lung Cancer, and Mature B-cell Neoplasms. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2026-2037.	1.1	18
241	Integrating DNA methylation measures to improve clinical risk assessment: are we there yet? The case of BRCA1Amethylation marks to improve clinical risk assessment of breast cancer. British Journal of Cancer, 2020, 122, 1133-1140.	2.9	18
242	Novel mammogramâ€based measures improve breast cancer risk prediction beyond an established mammographic density measure. International Journal of Cancer, 2021, 148, 2193-2202.	2.3	18
243	9q31.2-rs865686 as a Susceptibility Locus for Estrogen Receptor-Positive Breast Cancer: Evidence from the Breast Cancer Association Consortium. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1783-1791.	1.1	17
244	Genomeâ€wide association study of peripheral blood DNA methylation and conventional mammographic density measures. International Journal of Cancer, 2019, 145, 1768-1773.	2.3	17
245	FAN1 variants identified in multiple-case early-onset breast cancer families via exome sequencing: no evidence for association with risk for breast cancer. Breast Cancer Research and Treatment, 2011, 130, 1043-1049.	1.1	16
246	2q36.3 is associated with prognosis for oestrogen receptor-negative breast cancer patients treated with chemotherapy. Nature Communications, 2014, 5, 4051.	5.8	16
247	Consortium analysis of gene and gene–folate interactions in purine and pyrimidine metabolism pathways with ovarian carcinoma risk. Molecular Nutrition and Food Research, 2014, 58, 2023-2035.	1.5	16
248	The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor. Cancers, 2020, 12, 3254.	1.7	16
249	Tools for translational epigenetic studies involving formalin-fixed paraffin-embedded human tissue: applying the Infinium HumanMethyation450 Beadchip assay to large population-based studies. BMC Research Notes, 2015, 8, 543.	0.6	15
250	Evaluating the ovarian cancer gonadotropin hypothesis: A candidate gene study. Gynecologic Oncology, 2015, 136, 542-548.	0.6	15
251	Adult height is associated with increased risk of ovarian cancer: a Mendelian randomisation study. British Journal of Cancer, 2018, 118, 1123-1129.	2.9	15
252	VTRNA2-1: Genetic Variation, Heritable Methylation and Disease Association. International Journal of Molecular Sciences, 2021, 22, 2535.	1.8	15

#	Article	IF	CITATIONS
253	The SNP rs6500843 in 16p13.3 is associated with survival specifically among chemotherapy-treated breast cancer patients. Oncotarget, 2015, 6, 7390-7407.	0.8	15
254	Common variants in breast cancer risk loci predispose to distinct tumor subtypes. Breast Cancer Research, 2022, 24, 2.	2.2	15
255	Genome-wide and transcriptome-wide association studies of mammographic density phenotypes reveal novel loci. Breast Cancer Research, 2022, 24, 27.	2.2	15
256	Genetic variation at CYP3A is associated with age at menarche and breast cancer risk: a case-control study. Breast Cancer Research, 2014, 16, R51.	2.2	14
257	Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer. Carcinogenesis, 2015, 36, 256-271.	1.3	14
258	Increased genomic burden of germline copy number variants is associated with early onset breast cancer family registry. Breast Cancer Research, 2017, 19, 30.	2.2	14
259	Mortality after breast cancer as a function of time since diagnosis by estrogen receptor status and age at diagnosis. International Journal of Cancer, 2019, 145, 3207-3217.	2.3	14
260	Prediction of contralateral breast cancer: external validation of risk calculators in 20 international cohorts. Breast Cancer Research and Treatment, 2020, 181, 423-434.	1.1	14
261	TP53-based interaction analysis identifies cis-eQTL variants for TP53BP2, FBXO28, and FAM53A that associate with survival and treatment outcome in breast cancer. Oncotarget, 2017, 8, 18381-18398.	0.8	14
262	Evaluation of associations between genetically predicted circulating protein biomarkers and breast cancer risk. International Journal of Cancer, 2020, 146, 2130-2138.	2.3	13
263	No evidence that GATA3 rs570613 SNP modifies breast cancer risk. Breast Cancer Research and Treatment, 2009, 117, 371-379.	1.1	12
264	Comparing the frequency of common genetic variants and haplotypes between carriers and non-carriers of BRCA1 and BRCA2deleterious mutations in Australian women diagnosed with breast cancer before 40 years of age. BMC Cancer, 2010, 10, 466.	1.1	12
265	Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade. Human Molecular Genetics, 2014, 23, 6034-6046.	1.4	12
266	Gene panel testing for hereditary breast cancer. Medical Journal of Australia, 2016, 204, 188-190.	0.8	12
267	Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus. PLoS ONE, 2016, 11, e0160316.	1.1	12
268	Rare germline genetic variants and risk of aggressive prostate cancer. International Journal of Cancer, 2020, 147, 2142-2149.	2.3	12
269	Rare Germline Pathogenic Variants Identified by Multigene Panel Testing and the Risk of Aggressive Prostate Cancer. Cancers, 2021, 13, 1495.	1.7	12
270	Methylation of Breast Cancer Predisposition Genes in Early-Onset Breast Cancer: Australian Breast Cancer Family Registry. PLoS ONE, 2016, 11, e0165436.	1.1	12

#	Article	IF	CITATIONS
271	A protein-truncating mutation inCYP17A1 in three sisters with early-onset breast cancer. Human Mutation, 2005, 26, 298-302.	1.1	11
272	The AIB1 glutamine repeat polymorphism is not associated with risk of breast cancer before age 40 years in Australian women. Breast Cancer Research, 2005, 7, R353-6.	2.2	11
273	Breast Cancer Risk and 6q22.33: Combined Results from Breast Cancer Association Consortium and Consortium of Investigators on Modifiers of BRCA1/2. PLoS ONE, 2012, 7, e35706.	1.1	11
274	The incidence of PALB2 c.3113G>A in women with a strong family history of breast and ovarian cancer attending familial cancer centres in Australia. Familial Cancer, 2013, 12, 587-595.	0.9	11
275	The PALB2 p.Leu939Trp mutation is not associated with breast cancer risk. Breast Cancer Research, 2016, 18, 111.	2.2	11
276	The Spectrum of FANCM Protein Truncating Variants in European Breast Cancer Cases. Cancers, 2020, 12, 292.	1.7	11
277	Risk factors for uncommon histologic subtypes of breast cancer using centralized pathology review in the Breast Cancer Family Registry. Breast Cancer Research and Treatment, 2012, 134, 1209-1220.	1.1	10
278	First international workshop of the ATM and cancer risk group (4-5 December 2019). Familial Cancer, 2022, 21, 211-227.	0.9	10
279	Population-based estimates of breast cancer risk for carriers of pathogenic variants identified by gene-panel testing. Npj Breast Cancer, 2021, 7, 153.	2.3	10
280	Rationale for, and approach to, studying modifiers of risk in persons with a genetic predisposition to colorectal cancer. Current Oncology Reports, 2007, 9, 202-207.	1.8	9
281	The RAD51D E233G variant and breast cancer risk: population-based and clinic-based family studies of Australian women. Breast Cancer Research and Treatment, 2008, 112, 35-39.	1.1	9
282	Contribution of large genomic BRCA1 alterations to early-onset breast cancer selected for family history and tumour morphology: a report from The Breast Cancer Family Registry. Breast Cancer Research, 2011, 13, R14.	2.2	9
283	Dependence of colorectal cancer risk on the parent-of-origin of mutations in DNA mismatch repair genes. Human Mutation, 2011, 32, 207-212.	1.1	9
284	Tumour morphology of early-onset breast cancers predicts breast cancer risk for first-degree relatives: the Australian Breast Cancer Family Registry. Breast Cancer Research, 2012, 14, R122.	2.2	9
285	Obtaining high quality transcriptome data from formalin-fixed, paraffin-embedded diagnostic prostate tumor specimens. Laboratory Investigation, 2018, 98, 537-550.	1.7	9
286	Variants in genes encoding small GTPases and association with epithelial ovarian cancer susceptibility. PLoS ONE, 2018, 13, e0197561.	1.1	9
287	Mendelian randomisation study of smoking exposure in relation to breast cancer risk. British Journal of Cancer, 2021, 125, 1135-1145.	2.9	9
288	<i>PHIP</i> - a novel candidate breast cancer susceptibility locus on 6q14.1. Oncotarget, 2017, 8, 102769-102782.	0.8	9

#	Article	IF	CITATIONS
289	A genome-wide linkage study of mammographic density, a risk factor for breast cancer. Breast Cancer Research, 2011, 13, R132.	2.2	8
290	Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility: a pooled analysis of 42,510 cases and 40,577 controls from the Breast Cancer Association Consortium. Human Genetics, 2016, 135, 137-154.	1.8	8
291	Use of a Novel Nonparametric Version of DEPTH to Identify Genomic Regions Associated with Prostate Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1619-1624.	1.1	7
292	Heterogeneity of luminal breast cancer characterised by immunohistochemical expression of basal markers. British Journal of Cancer, 2016, 114, 298-304.	2.9	7
293	Height, selected genetic markers and prostate cancer risk: results from the PRACTICAL consortium. British Journal of Cancer, 2017, 117, 734-743.	2.9	7
294	Targeted massively parallel sequencing characterises the mutation spectrum of PALB2 in breast and ovarian cancer cases from Poland and Ukraine. Familial Cancer, 2018, 17, 345-349.	0.9	7
295	Association of germline genetic variants with breast cancer-specific survival in patient subgroups defined by clinic-pathological variables related to tumor biology and type of systemic treatment. Breast Cancer Research, 2021, 23, 86.	2.2	7
296	Blood pressure and risk of breast cancer, overall and by subtypes. Journal of Hypertension, 2017, 35, 1371-1380.	0.3	7
297	A Polygenic Risk Score Predicts Incident Prostate Cancer Risk in Older Men but Does Not Select for Clinically Significant Disease. Cancers, 2021, 13, 5815.	1.7	7
298	A BRCA1 promoter variant (rs11655505) and breast cancer risk. Journal of Medical Genetics, 2010, 47, 268-270.	1.5	6
299	Re: Microsatellite Instability and BRAF Mutation Testing in Colorectal Cancer Prognostication. Journal of the National Cancer Institute, 2014, 106, dju180-dju180.	3.0	6
300	Analysis of the breast cancer methylome using formalin-fixed paraffin-embedded tumour. Breast Cancer Research and Treatment, 2016, 160, 173-180.	1.1	6
301	Is RNASEL:p.Glu265* a modifier of early-onset breast cancer risk for carriers of high-risk mutations?. BMC Cancer, 2018, 18, 165.	1.1	6
302	Genetically Determined Height and Risk of Non-hodgkin Lymphoma. Frontiers in Oncology, 2019, 9, 1539.	1.3	6
303	Mismatch repair gene pathogenic germline variants in a population-based cohort of breast cancer. Familial Cancer, 2020, 19, 197-202.	0.9	6
304	Genomic Risk Prediction for Breast Cancer in Older Women. Cancers, 2021, 13, 3533.	1.7	6
305	Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element. American Journal of Human Genetics, 2021, 108, 1190-1203.	2.6	6
306	Genetic variants within the hTERT gene and the risk of colorectal cancer in Lynch syndrome. Genes and Cancer, 2015, 6, 445-451.	0.6	6

#	Article	IF	CITATIONS
307	Association of FOXO3 Blood DNA Methylation with Cancer Risk, Cancer Survival, and Mortality. Cells, 2021, 10, 3384.	1.8	6
308	Rare germline copy number variants (CNVs) and breast cancer risk. Communications Biology, 2022, 5, 65.	2.0	6
309	Familial Aspects of Mammographic Density Measures Associated with Breast Cancer Risk. Cancers, 2022, 14, 1483.	1.7	6
310	Germ-line variation at a functional p53 binding site increases susceptibility to breast cancer development. The HUGO Journal, 2009, 3, 31-40.	4.1	5
311	Socioâ€economic status and survival from breast cancer for young, Australian, urban women. Australian and New Zealand Journal of Public Health, 2010, 34, 200-205.	0.8	5
312	Detecting differential allelic expression using high-resolution melting curve analysis: application to the breast cancer susceptibility gene CHEK2. BMC Medical Genomics, 2011, 4, 39.	0.7	5
313	ABRAXAS (FAM175A) and Breast Cancer Susceptibility: No Evidence of Association in the Breast Cancer Family Registry. PLoS ONE, 2016, 11, e0156820.	1.1	5
314	Testing for Gene-Environment Interactions Using a Prospective Family Cohort Design: Body Mass Index in Early and Later Adulthood and Risk of Breast Cancer. American Journal of Epidemiology, 2017, 185, 487-500.	1.6	5
315	Two truncating variants in FANCC and breast cancer risk. Scientific Reports, 2019, 9, 12524.	1.6	5
316	Association of germline variation with the survival of women with BRCA1/2 pathogenic variants and breast cancer. Npj Breast Cancer, 2020, 6, 44.	2.3	5
317	CYP3A7*1C allele: linking premenopausal oestrone and progesterone levels with risk of hormone receptor-positive breast cancers. British Journal of Cancer, 2021, 124, 842-854.	2.9	5
318	Population-Based Estimates of the Age-Specific Cumulative Risk of Breast Cancer for Pathogenic Variants in CHEK2: Findings from the Australian Breast Cancer Family Registry. Cancers, 2021, 13, 1378.	1.7	5
319	Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer. Oncotarget, 2016, 7, 69097-69110.	0.8	5
320	Genetic Aspects of Mammographic Density Measures Associated with Breast Cancer Risk. Cancers, 2022, 14, 2767.	1.7	5
321	Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies?. Cancers, 2021, 13, 2370.	1.7	4
322	rs495139 in the TYMS-ENOSF1 Region and Risk of Ovarian Carcinoma of Mucinous Histology. International Journal of Molecular Sciences, 2018, 19, 2473.	1.8	3
323	PALB2 Genetic Variants: Can Functional Assays Assist Translation?. Trends in Cancer, 2020, 6, 263-265.	3.8	3
324	Population-based estimates of age-specific cumulative risk of breast cancer for pathogenic variants in ATM. Breast Cancer Research, 2022, 24, 24.	2.2	3

#	Article	IF	CITATIONS
325	Is BRCA2 c.9079 GÂ>ÂA a predisposing variant for early onset breast cancer?. Breast Cancer Research and Treatment, 2008, 109, 177-179.	1.1	2
326	rs2735383, located at a microRNA binding site in the 3'UTR of NBS1, is not associated with breast cancer risk. Scientific Reports, 2016, 6, 36874.	1.6	2
327	Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk. Scientific Reports, 2020, 10, 9688.	1.6	2
328	Rare genetic variants: making the connection with breast cancer susceptibility. AIMS Genetics, 2015, 02, 281-292.	1.9	2
329	Germline variants and breast cancer survival in patients with distant metastases at primary breast cancer diagnosis. Scientific Reports, 2021, 11, 19787.	1.6	2
330	Improving breast cancer risk prediction with epigenetic risk factors. Nature Reviews Clinical Oncology, 2022, , .	12.5	2
331	Genome-wide interaction analysis of menopausal hormone therapy use and breast cancer risk among 62,370 women. Scientific Reports, 2022, 12, 6199.	1.6	2
332	Does genetic predisposition modify the effect of lifestyle-related factors on DNA methylation?. Epigenetics, 2022, 17, 1838-1847.	1.3	2
333	The Role of New Sequencing Technology in Identifying Rare Mutations in New Susceptibility Genes for Cancer. Current Genetic Medicine Reports, 2013, 1, 175-181.	1.9	1
334	DNA methylation and breast cancer risk: value of twin and family studies. , 2021, , 67-83.		1
335	Adherence to the 2020 American Cancer Society Guideline for Cancer Prevention and risk of breast cancer for women at increased familial and genetic risk in the Breast Cancer Family Registry: an evaluation of the weight, physical activity, and alcohol consumption recommendations. Breast Cancer Research and Treatment, 2022, 194, 673-682.	1.1	1
336	Rationale for, and approach to, studying modifiers of risk in persons with a genetic predisposition to colorectal cancer. Current Colorectal Cancer Reports, 2006, 2, 173-178.	1.0	0
337	Large-Scale Genomic Analyses Link Reproductive Aging to Hypothalamic Signaling, Breast Cancer Susceptibility, and BRCA1-Mediated DNA Repair. Obstetrical and Gynecological Survey, 2015, 70, 758-762.	0.2	0
338	Interpretation of genomic variation and disease association: the great missense mutation challenge!. Breast Cancer Research and Treatment, 2015, 151, 475-476.	1.1	0
339	Genome-wide homozygosity and risk of four non-Hodgkin lymphoma subtypes. , 2021, 5, 200-217.		0