Igor V Pletnev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1040983/publications.pdf Version: 2024-02-01

ICOP V PLETNEV

#	Article	IF	CITATIONS
1	InChI, the IUPAC International Chemical Identifier. Journal of Cheminformatics, 2015, 7, 23.	2.8	508
2	InChI - the worldwide chemical structure identifier standard. Journal of Cheminformatics, 2013, 5, 7.	2.8	342
3	Drug Discovery Using Support Vector Machines. The Case Studies of Drug-likeness, Agrochemical-likeness, and Enzyme Inhibition Predictions. Journal of Chemical Information and Computer Sciences, 2003, 43, 2048-2056.	2.8	185
4	Task-specific ionic liquid trioctylmethylammonium salicylate as extraction solvent for transition metal ions. Talanta, 2010, 80, 1177-1182.	2.9	163
5	Solvent extraction of amino acids into a room temperature ionic liquid with dicyclohexano-18-crown-6. Analytical and Bioanalytical Chemistry, 2004, 378, 1369-1375.	1.9	146
6	Solvent extraction and extraction?voltammetric determination of phenols using room temperature ionic liquid. Analytical and Bioanalytical Chemistry, 2005, 381, 464-470.	1.9	121
7	Highly efficient extraction of phenols and aromatic amines into novel ionic liquids incorporating quaternary ammonium cation. Separation and Purification Technology, 2008, 63, 710-715.	3.9	102
8	Ionic liquid-based miniature electrochemical sensors for the voltammetric determination of catecholamines. Analytica Chimica Acta, 2008, 621, 178-184.	2.6	81
9	Ionic Liquids Plasticize and Bring Ion-Sensing Ability to Polymer Membranes of Selective Electrodes. Electroanalysis, 2006, 18, 1416-1421.	1.5	75
10	Measuring the solubilities of ionic liquids in water using ion-selective electrodes. Analytical and Bioanalytical Chemistry, 2005, 381, 427-430.	1.9	57
11	Extraction and ICP-OES determination of heavy metals using tetrabutylammonium bromide aqueous biphasic system and oleophilic collector. Talanta, 2021, 221, 121485.	2.9	55
12	Multielement Determination of Trace Heavy Metals in Water by Microwave-Induced Plasma Atomic Emission Spectrometry after Extraction in Unconventional Single-Salt Aqueous Biphasic System. Analytical Chemistry, 2018, 90, 6323-6331.	3.2	52
13	Dissolution of cellulose in ionic liquids as a way to obtain test materials for metal-ion detection. Analytical and Bioanalytical Chemistry, 2007, 387, 2263-2269.	1.9	51
14	Iodideâ€5elective Screenâ€Printed Electrodes Based on Lowâ€Melting Ionic Solids and Metallated Phthalocyanine. Electroanalysis, 2011, 23, 1067-1072.	1.5	32
15	Classification of metal ions according to their complexing properties: a data-driven approach. Analytica Chimica Acta, 2002, 455, 131-142.	2.6	31
16	Low-Melting Ionic Solids: Versatile Materials for Ion-Sensing Devices. ACS Applied Materials & Interfaces, 2009, 1, 2055-2059.	4.0	30
17	InChl version 1.06: now more than 99.99% reliable. Journal of Cheminformatics, 2021, 13, 40.	2.8	29
18	Conformational analysis of boron-containing compounds using Gillespie–Kepert version of molecular mechanics. Computational and Theoretical Chemistry, 2001, 536, 65-72.	1.5	28

IGOR V PLETNEV

#	Article	IF	CITATIONS
19	Screen-printed ion-selective electrodes covered with membranes containing ionic liquids. Mendeleev Communications, 2008, 18, 88-89.	0.6	28
20	18-Crown-6 and Dibenzo-18-crown-6 Assisted Extraction of Cesium from Water into Room Temperature Ionic Liquids and Its Correlation with Stability Constants for Cesium Complexes. Molecules, 2009, 14, 5001-5016.	1.7	26
21	InChIKey collision resistance: an experimental testing. Journal of Cheminformatics, 2012, 4, 39.	2.8	26
22	Extraction and determination of synthetic food dyes using tetraalkylammonium based liquid-liquid extraction. Microchemical Journal, 2021, 162, 105833.	2.3	25
23	Comparative Study of the Metal Phthalocyanates as Active Components in Salicylate-Selective Electrodes. Electroanalysis, 2001, 13, 246-252.	1.5	19
24	Solidified ionic liquid as crystalline sensing element of the bromide selective electrode. Sensors and Actuators B: Chemical, 2014, 193, 563-567.	4.0	19
25	New Directions in Using Ionic Liquids in Analytical Chemistry. 1: Liquid–Liquid Extraction. Journal of Analytical Chemistry, 2019, 74, 625-658.	0.4	17
26	A correlation of caesium–18-crown-6 complex formation constants with the extraction capability for hydrophobic ionic liquids. Mendeleev Communications, 2010, 20, 122-124.	0.6	15
27	Ionic liquids based on quaternary phosphonium cation as active components of solid-state iodide selective electrode. Talanta, 2012, 102, 123-127.	2.9	14
28	New generation extraction solvents: from ionic liquids and aqueous biphasic systems to deep eutectic solvents. Russian Chemical Reviews, 2021, 90, 1109-1141.	2.5	11
29	Surfactant Ion Selective Membrane Electrodes. Analytical Letters, 1996, 29, 843-858.	1.0	9
30	New Ionic Liquids for Extraction Preconcentration. Journal of Analytical Chemistry, 2019, 74, 1-11.	0.4	9
31	Highly selective solid-state sensor for iodide based on the combined use of platinum (IV) phthalocyanine and solidified pyridinium ionic liquid. Journal of Solid State Electrochemistry, 2019, 23, 543-552.	1.2	9
32	Metal ion complexes of 1,4,7-triazacyclononane and their aminoalkyl derivatives. Analysis of chelate rings fusion and molecular mechanics study. Canadian Journal of Chemistry, 1994, 72, 1404-1411.	0.6	8
33	Simplex-optimization with a new criterion. Applications to dual-column ion chromatography. Mikrochimica Acta, 1991, 103, 293-302.	2.5	7
34	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1998, 32, 9-21.	1.6	7
35	Molecular mechanics calculations of ?-diketonate, aqua, and aqua-?-diketonate complexes of lanthanide ions using Gillespie-Kepert model. Journal of Computational Chemistry, 2001, 22, 38-50.	1.5	6
36	3-(4-Tolylazo)phenylboronic acid as the active component of polyhydroxy compounds-selective electrodes. Electrochemistry Communications, 2002, 4, 978-984.	2.3	6

IGOR V PLETNEV

#	Article	IF	CITATIONS
37	New Directions in Using Ionic Liquids in Analytical Chemistry. 2: Electrochemical Methods. Journal of Analytical Chemistry, 2019, 74, 1-10.	0.4	6
38	A cesium-133 nuclear magnetic resonance study of the cesium cation Ñomplexation by macrocyclic polyethers in hydrophobic RITLs. Polyhedron, 2014, 81, 341-348.	1.0	4
39	Mixed sorbents and their use in continuous flow analysis. Mikrochimica Acta, 1995, 119, 81-93.	2.5	3
40	Formation of Complexes in RTIL and Ion Separations. , 0, , .		2
41	Novel ionic liquids for liquid–liquid extraction. , 2016, , 139-188.		2
42	Drug Discovery Using Support Vector Machines. The Case Studies of Drug-Likeness, Agrochemical-Likeness, and Enzyme Inhibition Predictions ChemInform, 2004, 35, no.	0.1	0