
Xiao-Quan Qi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1040926/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Biosynthesis, regulation, and domestication of bitterness in cucumber. Science, 2014, 346, 1084-1088.	6.0	388
2	A gene cluster for secondary metabolism in oat: Implications for the evolution of metabolic diversity in plants. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8233-8238.	3.3	271
3	Analysis of the Genome Sequence of the Medicinal Plant Salvia miltiorrhiza. Molecular Plant, 2016, 9, 949-952.	3.9	255
4	Quantitative Resistance to Biotrophic Filamentous Plant Pathogens: Concepts, Misconceptions, and Mechanisms. Annual Review of Phytopathology, 2015, 53, 445-470.	3.5	201
5	Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theoretical and Applied Genetics, 1998, 96, 376-384.	1.8	193
6	Comparison and integration of four barley genetic maps. Genome, 1996, 39, 379-394.	0.9	186
7	A different function for a member of an ancient and highly conserved cytochrome P450 family: From essential sterols to plant defense. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18848-18853.	3.3	169
8	Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theoretical and Applied Genetics, 1998, 96, 1205-1215.	1.8	162
9	A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13431-13436.	3.3	157
10	A Serine Carboxypeptidase-Like Acyltransferase Is Required for Synthesis of Antimicrobial Compounds and Disease Resistance in Oats Â. Plant Cell, 2009, 21, 2473-2484.	3.1	149
11	Association between relationship measures based on AFLP markers, pedigree data and morphological traits in barley. Theoretical and Applied Genetics, 1997, 95, 1161-1168.	1.8	145
12	Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Scientific Reports, 2017, 7, 43320.	1.6	123
13	Divergent evolution of oxidosqualene cyclases in plants. New Phytologist, 2012, 193, 1022-1038.	3.5	122
14	An integrated genetic map and a new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theoretical and Applied Genetics, 2004, 109, 1485-1493.	1.8	121
15	Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza Bunge. Plant Physiology, 2015, 169, pp.00695.2015.	2.3	118
16	<i>Sad3</i> and <i>Sad4</i> Are Required for Saponin Biosynthesis and Root Development in Oat. Plant Cell, 2008, 20, 201-212.	3.1	110
17	Development of AFLP markers in barley. Molecular Genetics and Genomics, 1997, 254, 330-336.	2.4	104
18	Construction of a BAC library of pearl millet, Pennisetum glaucum. Theoretical and Applied Genetics, 2001, 102, 1200-1205.	1.8	102

Xiao-Quan Qi

#	Article	IF	CITATIONS
19	Modularity of Plant Metabolic Gene Clusters: A Trio of Linked Genes That Are Collectively Required for Acylation of Triterpenes in Oat Â. Plant Cell, 2013, 25, 1078-1092.	3.1	100
20	L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs). Nucleic Acids Research, 2001, 29, 116e-116.	6.5	97
21	Use of the Metabolomics Approach to Characterize Chinese Medicinal Material Huangqi. Molecular Plant, 2012, 5, 376-386.	3.9	95
22	Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza. Nature Communications, 2021, 12, 685.	5.8	94
23	Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theoretical and Applied Genetics, 1999, 99, 877-884.	1.8	92
24	Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice. Journal of Integrative Plant Biology, 2014, 56, 749-759.	4.1	91
25	Dissecting plant secondary metabolism – constitutive chemical defences in cereals. New Phytologist, 2003, 159, 101-108.	3.5	85
26	Systematic Analysis and Identification of Stress-Responsive Genes of the NAC Gene Family in Brachypodium distachyon. PLoS ONE, 2015, 10, e0122027.	1.1	61
27	The evidence for abundance of QTLs for partial resistance to Puccinia hordei on the barley genome. Molecular Breeding, 2000, 6, 1-9.	1.0	52
28	Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nature Communications, 2018, 9, 604.	5.8	50
29	<i>CsMYB60</i> is a key regulator of flavonols and proanthocyanidans that determine the colour of fruit spines in cucumber. Journal of Experimental Botany, 2019, 70, 69-84.	2.4	40
30	ldentification of key amino acid residues determining product specificity of 2,3â€oxidosqualene cyclase in <i>Oryza</i> species. New Phytologist, 2018, 218, 1076-1088.	3.5	39
31	Signaling in Plant Disease Resistance and Symbiosis. Journal of Integrative Plant Biology, 2008, 50, 799-807.	4.1	37
32	Orthologous receptor kinases quantitatively affect the host status of barley to leaf rust fungi. Nature Plants, 2019, 5, 1129-1135.	4.7	37
33	Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins. Journal of Biological Chemistry, 2013, 288, 3696-3704.	1.6	35
34	Brachypodium distachyon T-DNA insertion lines: a model pathosystem to study nonhost resistance to wheat stripe rust. Scientific Reports, 2016, 6, 25510.	1.6	32
35	Diverse triterpene skeletons are derived from the expansion and divergent evolution of 2,3-oxidosqualene cyclases in plants. Critical Reviews in Biochemistry and Molecular Biology, 2022, 57, 113-132.	2.3	26
36	Cytochrome P450 family member CYP96B5 hydroxylates alkanes to primary alcohols and is involved in rice leaf cuticular wax synthesis. New Phytologist, 2020, 225, 2094-2107.	3.5	25

Xiao-Quan Qi

#	Article	IF	CITATIONS
37	Jujube metabolome selection determined the edible properties acquired during domestication. Plant Journal, 2022, 109, 1116-1133.	2.8	25
38	Identification and Validation of a Major Quantitative Trait Locus for Slowâ€rusting Resistance to Stripe Rust in Wheat ^F . Journal of Integrative Plant Biology, 2012, 54, 330-344.	4.1	23
39	Acclimation-induced metabolic reprogramming contributes to rapid desiccation tolerance acquisition in Boea hygrometrica. Environmental and Experimental Botany, 2018, 148, 70-84.	2.0	23
40	Improving bread wheat yield through modulating an unselected AP2/ERF gene. Nature Plants, 2022, 8, 930-939.	4.7	23
41	Genes encoding hub and bottleneck enzymes of the Arabidopsis metabolic network preferentially retain homeologs through whole genome duplication. BMC Evolutionary Biology, 2010, 10, 145.	3.2	22
42	The phenotypic expression of QTLs for partial resistance to barley leaf rust during plant development. Theoretical and Applied Genetics, 2010, 121, 857-864.	1.8	20
43	Finding and Analyzing Plant Metabolic Gene Clusters. Methods in Enzymology, 2012, 517, 113-138.	0.4	20
44	Arabidopsis Plastidial Folylpolyglutamate Synthetase Is Required for Seed Reserve Accumulation and Seedling Establishment in Darkness. PLoS ONE, 2014, 9, e101905.	1.1	20
45	Comparative physiological and metabolomic responses of four Brachypodium distachyon varieties contrasting in drought stress resistance. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	19
46	Discrimination and Quantification of True Biological Signals in Metabolomics Analysis Based on Liquid Chromatography-Mass Spectrometry. Molecular Plant, 2016, 9, 1217-1220.	3.9	19
47	Mining plant metabolomes: Methods, applications, and perspectives. Plant Communications, 2021, 2, 100238.	3.6	16
48	Ligation–mediated rolling–circle amplification–based approaches to single nucleotide polymorphism detection. Expert Review of Molecular Diagnostics, 2005, 5, 111-116.	1.5	14
49	Characterization of a 2,3â€oxidosqualene cyclase in the toosendanin biosynthetic pathway of <i>Melia toosendan</i> . Physiologia Plantarum, 2020, 170, 528-536.	2.6	14
50	QPMASS: A parallel peak alignment and quantification software for the analysis of large-scale gas chromatography-mass spectrometry (GC-MS)-based metabolomics datasets. Journal of Chromatography A, 2020, 1620, 460999.	1.8	14
51	Discovery of rare mutations in extensively pooled DNA samples using multiple target enrichment. Plant Biotechnology Journal, 2014, 12, 709-717.	4.1	13
52	Transcriptomic and metabolic flux analyses reveal shift of metabolic patterns during rice grain development. BMC Systems Biology, 2018, 12, 47.	3.0	10
53	Functional Analysis of a Rice Oxidosqualene Cyclase through Total Gene Synthesis. Molecular Plant, 2013, 6, 1726-1729.	3.9	9
54	Plant metabolomics and metabolic biology. Journal of Integrative Plant Biology, 2014, 56, 814-815.	4.1	7

XIAO-QUAN QI

#	Article	IF	CITATIONS
55	Mapping causal genes and genetic interactions for agronomic traits using a large F2 population in rice. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	5
56	AtPQT11, a P450 enzyme, detoxifies paraquat via N-demethylation. Journal of Genetics and Genomics, 2022, 49, 1169-1173.	1.7	5
57	Metal matters. Nature Chemical Biology, 2013, 9, 295-296.	3.9	4
58	Highly efficient generation of T-DNA insertion lines and isolation of flanking sequence tags (FSTs) of Brachypodium distachyon. Plant Biotechnology Reports, 2018, 12, 237-248.	0.9	3
59	An Efficient System for <i>Ds</i> Transposon Tagging in <i>Brachypodium distachyon</i> . Plant Physiology, 2019, 180, 56-65.	2.3	3
60	Genomeâ€wide investigation and transcriptional profiling of the oxidosqualene cyclase (<i>OSC</i>) genes in wheat (<i>Triticum aestivum</i>). Journal of Systematics and Evolution, 2022, 60, 1378-1392.	1.6	2
61	A brief view of international conference on plant cell wall biology 2017. Science Bulletin, 2017, 62, 1357-1358.	4.3	1
62	Improvement of multiplex semi-nested PCR system for screening of rare mutations by high-throughput sequencing. BioTechniques, 2019, 67, 294-298.	0.8	1
63	Multiple samples alignment for GC-MS data in parallel on Sector/Sphere. Journal of Computer Applications, 2013, 33, 215-218.	0.1	1
64	Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins Journal of Biological Chemistry, 2013, 288, 19644.	1.6	0