Mark D Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1040919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Carnosine or β-Alanine Supplementation on Markers of Glycemic Control and Insulin Resistance in Humans and Animals: A Systematic Review and Meta-analysis. Advances in Nutrition, 2021, 12, 2216-2231.	6.4	13
2	Anti-cancer actions of carnosine and the restoration of normal cellular homeostasis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119117.	4.1	19
3	Carnosine protects stimulus-secretion coupling through prevention of protein carbonyl adduction events in cells under metabolic stress. Free Radical Biology and Medicine, 2021, 175, 65-79.	2.9	12
4	Identification of a subset of trace amine-associated receptors and ligands as potential modulators of insulin secretion. Biochemical Pharmacology, 2020, 171, 113685.	4.4	12
5	The effect of carnosine or β-alanine supplementation on markers of glycaemic control and insulin resistance in human and animal studies: a protocol for a systematic review and meta-analysis. Systematic Reviews, 2020, 9, 282.	5.3	3
6	Modulation of Rab7a-mediated growth factor receptor trafficking inhibits islet beta cell apoptosis and autophagy under conditions of metabolic stress. Scientific Reports, 2020, 10, 15741.	3.3	3
7	Role of S100 proteins in health and disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118677.	4.1	171
8	The Physiological Roles of Carnosine and β-Alanine in Exercising Human Skeletal Muscle. Medicine and Science in Sports and Exercise, 2019, 51, 2098-2108.	0.4	39
9	Type 2 diabetes – An autoinflammatory disease driven by metabolic stress. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3805-3823.	3.8	60
10	The identification of TNFR5 as a therapeutic target in diabetes. Expert Opinion on Therapeutic Targets, 2017, 21, 349-351.	3.4	4
11	Carnosine scavenging of glucolipotoxic free radicals enhances insulin secretion and glucose uptake. Scientific Reports, 2017, 7, 13313.	3.3	42
12	Glucolipotoxicity initiates pancreatic β-cell death through TNFR5/CD40-mediated STAT1 and NF-κB activation. Cell Death and Disease, 2016, 7, e2329-e2329.	6.3	34
13	Snapin mediates insulin secretory granule docking, but not trans-SNARE complex formation. Biochemical and Biophysical Research Communications, 2016, 473, 403-407.	2.1	7
14	Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2563-2582.	4.1	1,514
15	Tumour necrosis factor receptor trafficking dysfunction opens the TRAPS door to pro-inflammatory cytokine secretion. Bioscience Reports, 2012, 32, 105-112.	2.4	39
16	Differential cytokine secretion results from p65 and c-Rel NF-κB subunit signaling in peripheral blood mononuclear cells of TNF receptor-associated periodic syndrome patients. Cellular Immunology, 2011, 268, 55-59.	3.0	24
17	Class II Phosphoinositide 3-Kinase Regulates Exocytosis of Insulin Granules in Pancreatic β Cells. Journal of Biological Chemistry, 2011, 286, 4216-4225.	3.4	130
18	Comment on: Low TNF-induced NF-ÂB and p38 phosphorylation levels in leucocytes in tumour necrosis factor receptor-associated periodic syndrome. Rheumatology, 2011, 50, 1525-1526.	1.9	2

Mark D Turner

#	Article	IF	CITATIONS
19	Lessons from Anti-TNF Biologics: Infliximab Failure in a TRAPS Family with the T50M Mutation in TNFRSF1A. Advances in Experimental Medicine and Biology, 2011, 691, 409-419.	1.6	19
20	Proinflammatory action of the antiinflammatory drug infliximab in tumor necrosis factor receptor–associated periodic syndrome. Arthritis and Rheumatism, 2009, 60, 619-625.	6.7	110
21	High extracellular glucose inhibits exocytosis through disruption of syntaxin 1A-containing lipid rafts. Biochemical and Biophysical Research Communications, 2009, 389, 241-246.	2.1	24
22	Abnormal tumor necrosis factor receptor I cell surface expression and NFâ€ՔB activation in tumor necrosis factor receptor–associated periodic syndrome. Arthritis and Rheumatism, 2008, 58, 273-283.	6.7	75
23	A novel TNFRSF1A splice mutation associated with increased nuclear factor ÂappaB (NF-ÂB) transcription factor activation in patients with tumour necrosis factor receptor associated periodic syndrome (TRAPS). Annals of the Rheumatic Diseases, 2008, 67, 1589-1595.	0.9	35
24	Coordinated control of both insulin secretion and insulin action through calpain-10-mediated regulation of exocytosis?. Molecular Genetics and Metabolism, 2007, 91, 305-307.	1.1	13
25	Calpain facilitates actin reorganization during glucose-stimulated insulin secretion. Biochemical and Biophysical Research Communications, 2007, 352, 650-655.	2.1	26
26	Effect of glucolipotoxicity and rosiglitazone upon insulin secretion. Biochemical and Biophysical Research Communications, 2007, 356, 756-762.	2.1	12
27	Emerging functions of the calpain superfamily of cysteine proteases in neuroendocrine secretory pathways. Journal of Neurochemistry, 2007, 103, 849-859.	3.9	31
28	Involvement of calpain and synaptotagmin Ca2+ sensors in hormone secretion from excitable endocrine cells. Journal of Endocrinology, 2006, 190, R1-R7.	2.6	12
29	Lumenal protein sorting to the constitutive secretory pathway of a regulated secretory cell. Journal of Cell Science, 2006, 119, 1833-1842.	2.0	22
30	Calpain-10: from genome search to function. Diabetes/Metabolism Research and Reviews, 2005, 21, 505-514.	4.0	61
31	Tumor necrosis factor receptor I from patients with tumor necrosis factor receptor-associated periodic syndrome interacts with wild-type tumor necrosis factor receptor I and induces ligand-independent NF-κB activation. Arthritis and Rheumatism, 2005, 52, 2906-2916.	6.7	67
32	Evidence that an Isoform of Calpain-10 Is a Regulator of Exocytosis in Pancreatic β-Cells. Molecular Endocrinology, 2005, 19, 213-224.	3.7	107
33	Fatty acyl CoA-mediated inhibition of endoplasmic reticulum assembly. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1693, 1-4.	4.1	14
34	Protein Traffic from the Secretory Pathway to the Endosomal System in Pancreatic β-Cells. Journal of Biological Chemistry, 2000, 275, 14025-14030.	3.4	51
35	A Rab GTPase Is Required for Homotypic Assembly of the Endoplasmic Reticulum. Journal of Biological Chemistry, 1997, 272, 13479-13483.	3.4	29