Xianliang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10405912/publications.pdf

Version: 2024-02-01

933447 1372567 5,047 10 10 10 citations h-index g-index papers 10 10 10 4088 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Role of surface electromagnetic waves in metamaterial absorbers. Optics Express, 2016, 24, 6783.	3.4	47
2	Bi-layer metamaterials as fully functional near-perfect infrared absorbers. Applied Physics Letters, 2015, 107, .	3.3	35
3	Coherent emission of light using stacked gratings. Physical Review B, 2013, 87, .	3.2	39
4	Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials. Advanced Optical Materials, 2013, 1, 559-562.	7.3	87
5	Metamaterial Electromagnetic Wave Absorbers. Advanced Materials, 2012, 24, OP98-120, OP181.	21.0	1,340
6	Metamaterial Electromagnetic Wave Absorbers (Adv. Mater. 23/2012). Advanced Materials, 2012, 24, OP181.	21.0	43
7	Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters. Physical Review Letters, 2011, 107, 045901.	7.8	1,250
8	Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance. Physical Review Letters, 2010, 104, 207403.	7.8	1,011
9	High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010, 96, .	3.3	1,071
10	Planar wallpaper group metamaterials for novel terahertz applications. Optics Express, 2008, 16, 18565.	3.4	124