Min Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10403347/publications.pdf Version: 2024-02-01

121 papers	6,750 citations	57752 44 h-index	64791 79 g-index
121	121	121	8559
all docs	docs citations	times ranked	citing authors

MIN CHO

#	Article	IF	CITATIONS
1	Microwave-assisted rapid synthesis of Cu2S:ZnIn2S4 marigold-like nanoflower heterojunctions and enhanced visible light photocatalytic hydrogen production via Pt sensitization. Journal of Industrial and Engineering Chemistry, 2022, 108, 203-214.	5.8	10
2	Influence of ZnO Magnetron Sputtering on Controlled Buildout of Zirconium-Doped ZnFe ₂ O ₄ /Fe ₂ O ₃ Heterojunction Photoanodes for Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2022, 5, 915-929.	5.1	9
3	Zero Discharge of Dyes and Regeneration of a Washing Solution in Membrane-Based Dye Removal by Cold Plasma Treatment. Membranes, 2022, 12, 546.	3.0	5
4	Palladium metal oxide/hydroxide clustered cobalt oxide co-loading on acid treated TiO2 nanorods for degradation of organic pollutants and Salmonella typhimurium inactivation under simulated solar light. Chemical Engineering Journal, 2021, 408, 127260.	12.7	18
5	Effects of Calcination Temperature on the Phase Composition, Photocatalytic Degradation, and Virucidal Activities of TiO ₂ Nanoparticles. ACS Omega, 2021, 6, 10668-10678.	3.5	82
6	Combinatorial treatment using citric acid, malic acid, and phytic acid for synergistical inactivation of foodborne pathogenic bacteria. Korean Journal of Chemical Engineering, 2021, 38, 826-832.	2.7	4
7	Diclofenac modified the root system architecture of Arabidopsis via interfering with the hormonal activities of auxin. Journal of Hazardous Materials, 2021, 413, 125402.	12.4	7
8	Photocatalytic degradation of organic pollutants and inactivation of pathogens under visible light via CoOx surface-modified Rh/Sb-doped SrTiO3 nanocube. Journal of Materials Science, 2021, 56, 17235-17253.	3.7	11
9	Photocatalytic degradation of methylene blue under UV and visible light by brookite–rutile bi-crystalline phase of TiO ₂ . New Journal of Chemistry, 2021, 45, 3485-3497.	2.8	36
10	Evaluation of applicability of male-specific coliphage-based detection methods for microbial contamination tracking. Journal of Microbiology and Biotechnology, 2021, 31, .	2.1	0
11	Simultaneous and synergistic effect of heavy metal adsorption on the enhanced photocatalytic performance of a visible-light-driven RS-TONR/TNT composite. Environmental Research, 2020, 180, 108651.	7.5	33
12	Agricultural waste materials enhance protease production by Bacillus subtilis B22 in submerged fermentation under blue light-emitting diodes. Bioprocess and Biosystems Engineering, 2020, 43, 821-830.	3.4	24
13	V ₂ O ₅ /RGO/Pt nanocomposite on oxytetracycline degradation and pharmaceutical effluent detoxification. Journal of Chemical Technology and Biotechnology, 2020, 95, 297-307.	3.2	32
14	Cover Image, Volume 95, Issue 1. Journal of Chemical Technology and Biotechnology, 2020, 95, i.	3.2	0
15	Remediation of BTEX and Cr(VI) contamination in soil using bioelectrochemical system—an eco-friendly approach. Environmental Science and Pollution Research, 2020, 27, 837-845.	5.3	15
16	Enhanced removal of bisphenol A from contaminated soil by coupling Bacillus subtilis HV-3 with electrochemical system. Chemosphere, 2020, 249, 126083.	8.2	24
17	Self-supported CdSe nanowire/nanosheet photoanodes on cadmium foil <i>via in situ</i> hydrothermal transformation of CdSe(en) _{0.5} complex nanostructures. Nanoscale, 2020, 12, 19241-19252.	5.6	3
18	Dual CdS Nanoparticle-Deposited Vertically Aligned Titanate Nanotube Heterostructure Photoanode. Industrial & Engineering Chemistry Research, 2020, 59, 9488-9499.	3.7	8

#	Article	IF	CITATIONS
19	Multi-phased internalization of murine norovirus (MNV) in Arabidopsis seedlings and its potential correlation with plant defensive responses. Microbial Pathogenesis, 2019, 135, 103648.	2.9	3
20	Free chlorine and phytic acid synergistically inactivated conidia of Aspergillus spp Korean Journal of Chemical Engineering, 2019, 36, 1799-1805.	2.7	3
21	Differential Microbicidal Effects of Bimetallic Iron–Copper Nanoparticles on <i>Escherichia coli</i> and MS2 Coliphage. Environmental Science & Technology, 2019, 53, 2679-2687.	10.0	31
22	A mechanism study on the photocatalytic inactivation of Salmonella typhimurium bacteria by CuxO loaded rhodium–antimony co-doped TiO2 nanorods. Photochemical and Photobiological Sciences, 2019, 18, 1092-1100.	2.9	9
23	CdIn2S4 chalcogenide/TiO2 nanorod heterostructured photoanode: An advanced material for photoelectrochemical applications. Applied Surface Science, 2019, 490, 18-29.	6.1	33
24	Volatile dimethyl disulfide affects root system architecture of Arabidopsis via modulation of canonical auxin signaling pathways. Environmental Sustainability, 2019, 2, 211-216.	2.8	16
25	Effect of tetravalent ions dopants and CoO surface modification on hematite nanorod array for photoelectrochemical degradation of Orange-II dye. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 305-315.	5.3	6
26	Hierarchical TiO2@In2O3 heteroarchitecture photoanodes: Mechanistic study on interfacial charge carrier dynamics through water splitting and organic decomposition. Applied Surface Science, 2019, 480, 1-12.	6.1	37
27	Tunable Electronic Properties of Nitrogen and Sulfur Doped Graphene: Density Functional Theory Approach. Nanomaterials, 2019, 9, 268.	4.1	39
28	Efficient Way To Assemble CdS Nanorose-Decorated CdSe-Tetrakaidecahedron Heterojunction Photoanodes for High-Photoelectrochemical Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 19708-19719.	6.7	13
29	Red yeast rice fermentation with Bacillus subtilis B2 under blue light-emitting diodes increases antioxidant secondary products (Manuscript ID: BPBSE-18-0387). Bioprocess and Biosystems Engineering, 2019, 42, 529-539.	3.4	11
30	Enhanced amylase production by a Bacillus subtilis strain under blue light-emitting diodes. Preparative Biochemistry and Biotechnology, 2019, 49, 143-150.	1.9	14
31	Facile synthesis of Bi2S3 nanosheet/Zr:Fe2O3 nanorod heterojunction: Effect of Ag interlayer on the change transport and photoelectrochemical stability. Journal of Industrial and Engineering Chemistry, 2019, 70, 311-321.	5.8	12
32	Data on the effect of improved TiO2/FTO interface and Ni(OH)2 cocatalyst on the photoelectrochemical performances and stability of CdS cased ZnIn2S4/TiO2 heterojunction. Data in Brief, 2018, 17, 807-819.	1.0	4
33	Enhanced solar photoelectrochemical conversion efficiency of the hydrothermally-deposited TiO2 nanorod arrays: Effects of the light trapping and optimum charge transfer. Applied Surface Science, 2018, 440, 688-699.	6.1	60
34	Enhanced Photocatalytic Degradation of Organic Pollutants and Inactivation of <i>Listeria monocytogenes</i> by Visible Light Active Rh–Sb Codoped TiO ₂ Nanorods. ACS Sustainable Chemistry and Engineering, 2018, 6, 4302-4315.	6.7	44
35	Fabrication and characterization of TiO2-loaded Moringa oleifera gum-activated carbon and the photo-catalytic degradation of phosphate in aqueous solutions. Nanotechnology for Environmental Engineering, 2018, 3, 1.	3.3	18
36	Biogenic synthesis from PrunusÂ×Âyedoensis leaf extract, characterization, and photocatalytic and antibacterial activity of TiO2 nanoparticles. Research on Chemical Intermediates, 2018, 44, 2489-2502.	2.7	23

#	Article	IF	CITATIONS
37	Self-assembled Mn ₃ O ₄ nano-clusters over carbon nanotube threads with enhanced supercapacitor performance. New Journal of Chemistry, 2018, 42, 19608-19614.	2.8	29
38	Active Methanol Oxidation Reaction by Enhanced CO Tolerance on Bimetallic Pt/Ir Electrocatalysts Using Electronic and Bifunctional Effects. ACS Applied Materials & Interfaces, 2018, 10, 39581-39589.	8.0	43
39	<i>In-Situ</i> Noble Fabrication of Bi ₂ S ₃ /BiVO ₄ Hybrid Nanostructure through a Photoelectrochemical Transformation Process for Solar Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 12489-12501.	6.7	33
40	Active composite photocatalyst synthesized from inactive Rh & Sb doped TiO2 nanorods: Enhanced degradation of organic pollutants & antibacterial activity under visible light irradiation. Applied Catalysis A: General, 2018, 564, 43-55.	4.3	38
41	A hydrothermally grown CdS nanograin-sensitized 1D Zr:α-Fe ₂ O ₃ /FTO photoanode for efficient solar-light-driven photoelectrochemical performance. Dalton Transactions, 2017, 46, 2377-2386.	3.3	13
42	Preparation of urushiol-containing poly(methyl methacrylate) copolymers for antibacterial and antifouling coatings. Journal of Coatings Technology Research, 2017, 14, 621-630.	2.5	10
43	Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech, 2017, 7, 72.	2.2	112
44	CdS/Zr:Fe ₂ O ₃ Nanorod Arrays with Al ₂ O ₃ Passivation Layer for Photoelectrochemical Solar Hydrogen Generation. ChemSusChem, 2017, 10, 2030-2039.	6.8	37
45	Development of hydrophilicity on the proton exchange using sulfonic acid on PEEK in the presence of water: a density functional theory study. Theoretical Chemistry Accounts, 2017, 136, 1.	1.4	4
46	Fabrication of A/R-TiO 2 composite for enhanced photoelectrochemical performance: Solar hydrogen generation and dye degradation. Applied Surface Science, 2017, 426, 833-843.	6.1	49
47	Extraction of natural colorant from purple sweet potato and dyeing of fabrics with silver nanoparticles for augmented antibacterial activity against skin pathogens. Journal of Photochemistry and Photobiology B: Biology, 2017, 173, 571-579.	3.8	33
48	Boosting Photocatalytic Performance of Inactive Rutile TiO ₂ Nanorods under Solar Light Irradiation: Synergistic Effect of Acid Treatment and Metal Oxide Co-catalysts. ACS Applied Materials & Interfaces, 2017, 9, 23602-23613.	8.0	37
49	Significance of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on phytoextraction of Pband Zn by Zea mays L Environmental Science and Pollution Research, 2017, 24, 3172-3180.	5.3	18
50	Highly efficient and stable 3D Ni(OH)2/CdS/ZnIn2S4/TiO2 heterojunction under solar light: Effect of an improved TiO2/FTO interface and cocatalyst. Solar Energy Materials and Solar Cells, 2017, 159, 475-487.	6.2	39
51	Enhanced competitive adsorption of CO2 and H2 on graphyne: A density functional theory study. AIP Advances, 2017, 7, .	1.3	15
52	Cottonseed Oilcake Extract Mediated Green Synthesis of Silver Nanoparticles and Its Antibacterial and Cytotoxic Activity. Journal of Nanomaterials, 2016, 2016, 1-6.	2.7	32
53	Simultaneous removal of chromium(VI) and Reactive Black 5 using zeolite supported nano-scale zero-valent iron composite. Environmental Earth Sciences, 2016, 75, 1.	2.7	20
54	Induced application of biological waste Escherichia coli functionalized with an amine-based polymer for CO ₂ capture. RSC Advances, 2016, 6, 77535-77544.	3.6	2

#	Article	IF	CITATIONS
55	Synthesis and antimicrobial activity of palladium nanoparticles from Prunus × yedoensis leaf extract. Materials Letters, 2016, 185, 335-338.	2.6	56
56	Microbial inactivation kinetics and mechanisms of carbon-doped TiO 2 (C-TiO 2) under visible light. Journal of Hazardous Materials, 2016, 306, 133-139.	12.4	41
57	Metal oxide top layer as an interfacial promoter on a ZnIn2S4/TiO2 heterostructure photoanode for enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2016, 184, 337-346.	20.2	52
58	Low-cost and eco-friendly synthesis of silver nanoparticles using coconut (<i>Cocos nucifera)</i> oil cake extract and its antibacterial activity. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1878-1882.	2.8	87
59	Density functional theory approach to CO ₂ adsorption on a spinel mineral: determination of binding coordination. RSC Advances, 2016, 6, 28607-28611.	3.6	8
60	Phytofabrication of bioinspired zinc oxide nanocrystals for biomedical application. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1529-1536.	2.8	11
61	Eco-friendly approach towards green synthesis of zinc oxide nanocrystals and its potential applications. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1537-1543.	2.8	28
62	Reduction of silver (I) using defatted cashew nut shell starch and its structural comparison with commercial product. Carbohydrate Polymers, 2015, 133, 39-45.	10.2	13
63	Impact of an organic formulation (panchakavya) on the bioleaching of copper and lead in contaminated mine soil. Chemosphere, 2015, 138, 127-132.	8.2	15
64	Synthesis and characterization of nanosilver with antibacterial properties using Pinus densiflora young cone extract. Journal of Photochemistry and Photobiology B: Biology, 2015, 147, 63-68.	3.8	42
65	Fabrication of a ternary CdS/ZnIn ₂ S ₄ /TiO ₂ heterojunction for enhancing photoelectrochemical performance: effect of cascading electron–hole transfer. Journal of Materials Chemistry A, 2015, 3, 23597-23606.	10.3	85
66	Relative Expression of Low Molecular Weight Protein, Tyrosine Phosphatase (Wzb Gene) of Herbaspirillum sp. GW103 Toward Arsenic Stress and Molecular Modeling. Current Microbiology, 2015, 71, 311-316.	2.2	7
67	Simultaneous utilization of soju industrial waste for silica production and its residue ash as effective cationic dye adsorbent. E-Polymers, 2015, 15, 427-437.	3.0	0
68	Phytoremediation of Heavy Metals in Contaminated Water and Soil Using <i>Miscanthus</i> sp. Goedae-Uksae 1. International Journal of Phytoremediation, 2015, 17, 515-520.	3.1	47
69	Phytosynthesis of silver nanoparticles by Prunus yedoensis leaf extract and their antimicrobial activity. Materials Letters, 2015, 138, 272-275.	2.6	68
70	N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: Effects of in situ chloramination, breakpoint chlorination, and pre-oxidation. Journal of Hazardous Materials, 2015, 282, 133-140.	12.4	66
71	OX40 and 4-1BB downregulate Kaposi's sarcoma-associated herpesvirus replication inâ€,lymphatic endothelial cells, but 4-1BB and notâ€,OX40 inhibits viral replication in B-cells. Journal of General Virology, 2015, 96, 3635-3645.	2.9	3
72	Biosynthesis and characterization of silver nanoparticles using panchakavya, an Indian traditional farming formulating agent. International Journal of Nanomedicine, 2014, 9, 1593.	6.7	115

#	Article	IF	CITATIONS
73	Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity. Bioprocess and Biosystems Engineering, 2014, 37, 1527-1534.	3.4	53
74	Laccase immobilization on cellulose nanofiber: The catalytic efficiency and recyclic application for simulated dye effluent treatment. Journal of Molecular Catalysis B: Enzymatic, 2014, 100, 111-120.	1.8	140
75	Synthesis of Silver and Gold Nanoparticles Using Cashew Nut Shell Liquid and Its Antibacterial Activity Against Fish Pathogens. Indian Journal of Microbiology, 2014, 54, 196-202.	2.7	45
76	Application of polyaniline/bacterial extracellular polysaccharide nanocomposite for removal and detoxification of Cr(VI). Cellulose, 2014, 21, 463-472.	4.9	28
77	Synthesis and Characterization of Visible-to-UVC Upconversion Antimicrobial Ceramics. Environmental Science & Technology, 2014, 48, 140205070115003.	10.0	14
78	C60 aminofullerene-magnetite nanocomposite designed for efficient visible light photocatalysis and magnetic recovery. Carbon, 2014, 69, 92-100.	10.3	31
79	Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria. Applied Microbiology and Biotechnology, 2014, 98, 8179-8189.	3.6	49
80	Intrinsic Kinetics of Platy Hydrated Magnesium Silicate (Talc) for Geological CO2 Sequestration: Determination of Activation Barrier. Industrial & Engineering Chemistry Research, 2014, 53, 16523-16528.	3.7	1
81	Fluorinated TiO2 as an ambient light-activated virucidal surface coating material for the control of human norovirus. Journal of Photochemistry and Photobiology B: Biology, 2014, 140, 315-320.	3.8	59
82	Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2). Journal of Hazardous Materials, 2014, 279, 105-110.	12.4	50
83	Antimicrobial fabrication of cotton fabric and leather using green-synthesized nanosilver. Carbohydrate Polymers, 2014, 106, 319-325.	10.2	67
84	Bioleaching characteristics, influencing factors of Cu solubilization and survival of Herbaspirillum sp. GW103 in Cu contaminated mine soil. Chemosphere, 2014, 109, 42-48.	8.2	53
85	Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings. Chemosphere, 2013, 90, 2267-2272.	8.2	120
86	Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Materials Letters, 2013, 105, 128-131.	2.6	164
87	Laccase-poly(lactic-co-glycolic acid) (PLGA) nanofiber: Highly stable, reusable, and efficacious for the transformation of diclofenac. Enzyme and Microbial Technology, 2012, 51, 113-118.	3.2	69
88	Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. Journal of Hazardous Materials, 2012, 199-200, 314-320.	12.4	177
89	PolyDADMAC and Dimethylamine as Precursors of <i>N</i> -Nitrosodimethylamine during Ozonation: Reaction Kinetics and Mechanisms. Environmental Science & Technology, 2011, 45, 4353-4359.	10.0	116
90	<i>Escherichia coli</i> Inactivation by UVC-Irradiated C ₆₀ : Kinetics and Mechanisms. Environmental Science & Technology, 2011, 45, 9627-9633.	10.0	23

#	Article	IF	CITATIONS
91	Converting Visible Light into UVC: Microbial Inactivation by Pr ³⁺ -Activated Upconversion Materials. Environmental Science & Technology, 2011, 45, 3680-3686.	10.0	107
92	Investigating synergism during sequential inactivation of MS-2 phage and Bacillus subtilis spores with UV/H2O2 followed by free chlorine. Water Research, 2011, 45, 1063-1070.	11.3	53
93	Inactivation and surface interactions of MS-2 bacteriophage in a TiO2 photoelectrocatalytic reactor. Water Research, 2011, 45, 2104-2110.	11.3	79
94	Visible Light Sensitized Inactivation of MS-2 Bacteriophage by a Cationic Amine-Functionalized C ₆₀ Derivative. Environmental Science & Technology, 2010, 44, 6685-6691.	10.0	60
95	C ₆₀ Aminofullerene Immobilized on Silica as a Visible-Light-Activated Photocatalyst. Environmental Science & Technology, 2010, 44, 9488-9495.	10.0	73
96	Mechanisms of Escherichia coli inactivation by several disinfectants. Water Research, 2010, 44, 3410-3418.	11.3	241
97	Photochemical and Antimicrobial Properties of Novel C ₆₀ Derivatives in Aqueous Systems. Environmental Science & Technology, 2009, 43, 6604-6610.	10.0	127
98	<i>Escherichia coli</i> Inactivation by Water-Soluble, Ozonated C ₆₀ Derivative: Kinetics and Mechanisms. Environmental Science & amp; Technology, 2009, 43, 7410-7415.	10.0	41
99	Delineating Oxidative Processes of Aqueous C ₆₀ Preparations: Role of THF Peroxide. Environmental Science & Technology, 2009, 43, 108-113.	10.0	56
100	Translocation of C ₆₀ from Aqueous Stable Colloidal Aggregates into Surfactant Micelles. Environmental Science & Technology, 2009, 43, 9124-9129.	10.0	11
101	Transformation of Aggregated C ₆₀ in the Aqueous Phase by UV Irradiation. Environmental Science & Technology, 2009, 43, 4878-4883.	10.0	79
102	Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation. Water Research, 2008, 42, 356-362.	11.3	155
103	The application of bioluminescence assay with culturing for evaluating quantitative disinfection performance. Water Research, 2007, 41, 741-746.	11.3	7
104	Inactivation of Escherichia coli in the electrochemical disinfection process using a Pt anode. Chemosphere, 2007, 67, 652-659.	8.2	117
105	Inactivation of Bacillus subtilis spores during ozonation in water treatment plant: Influence of pre-treatment and consequences for positioning of the ozonation step. Chemosphere, 2007, 69, 675-681.	8.2	23
106	SURFICIAL DISINFECTION OF ESCHERIACHIA COLI-CONTAMINATED PLAYGROUND SOIL BY UV IRRADIATION. Environmental Engineering Research, 2007, 12, 64-71.	2.5	1
107	Photo or Solar Ferrioxalate Disinfection Technology without External Hydrogen Peroxide Supply. Environmental Engineering Research, 2007, 12, 238-243.	2.5	0
108	Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants. Water Research, 2006, 40, 2911-2920.	11.3	86

#	ARTICLE	IF	CITATIONS
109	Study on Fe(VI) species as a disinfectant: Quantitative evaluation and modeling for inactivating Escherichia coli. Water Research, 2006, 40, 3580-3586.	11.3	70
110	Enhanced Bactericidal Effect of O3/H2O2Followed by Cl2. Ozone: Science and Engineering, 2006, 28, 335-340.	2.5	15
111	Low-Temperature Synthesis of Highly Crystalline TiO2 Nanocrystals and their Application to Photocatalysis. Small, 2005, 1, 812-816.	10.0	117
112	Different Inactivation Behaviors of MS-2 Phage and Escherichia coli in TiO 2 Photocatalytic Disinfection. Applied and Environmental Microbiology, 2005, 71, 270-275.	3.1	466
113	Enhanced disinfection efficiency of mechanically mixed oxidants with free chlorine. Water Research, 2005, 39, 721-727.	11.3	51
114	Large-Scale Synthesis of TiO2Nanorods via Nonhydrolytic Solâ^'Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation ofE.coli. Journal of Physical Chemistry B, 2005, 109, 15297-15302.	2.6	379
115	Inactivation of Escherichia coli by Photochemical Reaction of Ferrioxalate at Slightly Acidic and Near-Neutral pHs. Applied and Environmental Microbiology, 2004, 70, 1129-1134.	3.1	57
116	Control of bacterial growth in water using synthesized inorganic disinfectant. Chemosphere, 2004, 55, 775-780.	8.2	44
117	Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Research, 2004, 38, 1069-1077.	11.3	704
118	Disinfection of Water Containing Natural Organic Matter by Using Ozone-Initiated Radical Reactions. Applied and Environmental Microbiology, 2003, 69, 2284-2291.	3.1	170
119	Quantitative Evaluation of the Synergistic Sequential Inactivation ofBacillus subtilisSpores with Ozone Followed by Chlorine. Environmental Science & amp; Technology, 2003, 37, 2134-2138.	10.0	43
120	Investigation of Ozone Reaction in River Waters Causing Instantaneous Ozone Demand. Ozone: Science and Engineering, 2003, 25, 251-259.	2.5	24
121	Effect of pH and Importance of Ozone initiated Radical Reactions In Inactivating <i>Bacillus subtilis</i> Spore. Ozone: Science and Engineering, 2002, 24, 145-150.	2.5	30