Luiza M Ghila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1040208/publications.pdf Version: 2024-02-01

Гшил М Сни л

#	Article	IF	CITATIONS
1	Apoptotic Cells Provide an Unexpected Source of Wnt3 Signaling to Drive Hydra Head Regeneration. Developmental Cell, 2009, 17, 279-289.	7.0	356
2	Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature, 2014, 514, 503-507.	27.8	335
3	Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature, 2019, 567, 43-48.	27.8	188
4	Origins of neurogenesis, a cnidarian view. Developmental Biology, 2009, 332, 2-24.	2.0	152
5	Silencing of the hydra serine protease inhibitor Kazal1 gene mimics the human SPINK1 pancreatic phenotype. Journal of Cell Science, 2006, 119, 846-857.	2.0	88
6	Cell plasticity in homeostasis and regeneration. Molecular Reproduction and Development, 2010, 77, 837-855.	2.0	85
7	Head regeneration in wild-type hydra requires de novo neurogenesis. Development (Cambridge), 2007, 134, 1191-1201.	2.5	82
8	Injury-induced activation of the MAPK/CREB pathway triggers apoptosis-induced compensatory proliferation in hydra head regeneration. Development Growth and Differentiation, 2011, 53, 186-201.	1.5	72
9	Autophagy in Hydra: A response to starvation and stress in early animal evolution. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1432-1443.	4.1	67
10	Probing the missing mature β-cell proteomic landscape in differentiating patient iPSC-derived cells. Scientific Reports, 2017, 7, 4780.	3.3	54
11	Pancreatic islet-autonomous insulin and smoothened-mediated signalling modulate identity changes of glucagon+ α-cells. Nature Cell Biology, 2018, 20, 1267-1277.	10.3	54
12	The Effect of Wnt Pathway Modulators on Human iPSC-Derived Pancreatic Beta Cell Maturation. Frontiers in Endocrinology, 2019, 10, 293.	3.5	35
13	Encapsulation boosts islet-cell signature in differentiating human induced pluripotent stem cells via integrin signalling. Scientific Reports, 2020, 10, 414.	3.3	33
14	RNAi gene silencing affects cell and developmental plasticity in hydra. Comptes Rendus - Biologies, 2007, 330, 491-497.	0.2	15
15	In vivo Environment Swiftly Restricts Human Pancreatic Progenitors Toward Mono-Hormonal Identity via a HNF1A/HNF4A Mechanism. Frontiers in Cell and Developmental Biology, 2020, 8, 109.	3.7	14
16	Reprogrammed Cells Display Distinct Proteomic Signatures Associated with Colony Morphology Variability. Stem Cells International, 2019, 2019, 1-16.	2.5	13
17	In vivo hyperglycaemia exposure elicits distinct periodâ€dependent effects on human pancreatic progenitor differentiation, conveyed by oxidative stress. Acta Physiologica, 2020, 228, e13433.	3.8	13
18	The evolutionarily conserved gene LNP-1 is required for synaptic vesicle trafficking and synaptic transmission. European Journal of Neuroscience, 2008, 27, 621-630.	2.6	12

Luiza M Ghila

#	Article	IF	CITATIONS
19	Tissue repair brakes: A common paradigm in the biology of regeneration. Stem Cells, 2020, 38, 330-339.	3.2	8
20	Bioinformatic Analyses of miRNA–mRNA Signature during hiPSC Differentiation towards Insulin-Producing Cells upon HNF4α Mutation. Biomedicines, 2020, 8, 179.	3.2	6
21	Novel protein signatures suggest progression to muscular invasiveness in bladder cancer. PLoS ONE, 2018, 13, e0206475.	2.5	4
22	Spatial Environment Affects <i>HNF4A</i> Mutation-Specific Proteome Signatures and Cellular Morphology in hiPSC-Derived β-Like Cells. Diabetes, 2022, 71, 862-869.	0.6	4
23	A Method for Encapsulation and Transplantation into Diabetic Mice of Human Induced Pluripotent Stem Cells (hiPSC)-Derived Pancreatic Progenitors. Methods in Molecular Biology, 2021, , 327-349.	0.9	3
24	Chronically Elevated Exogenous Glucose Elicits Antipodal Effects on the Proteome Signature of Differentiating Human iPSC-Derived Pancreatic Progenitors. International Journal of Molecular Sciences, 2021, 22, 3698.	4.1	2
25	Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Yearbook of Paediatric Endocrinology, 0, , .	0.0	2
26	Islet cell replacement and transplantation immunology in a mouse strain with inducible diabetes. Scientific Reports, 2022, 12, .	3.3	2
27	402.2: High Glucose Concentration Increases KATP Channel Activity but Suppresses Mitochondrial Respiration Ability in Insulin-producing Cells Regenerated From Stem Cells. Transplantation, 2021, 105, S27-S27.	1.0	0
28	Editorial: Beta-Cell Fate: From Gene Circuits to Disease Mechanisms. Frontiers in Genetics, 2022, 13, 822440.	2.3	0