Cheng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10401772/publications.pdf Version: 2024-02-01

CHENC YANC

#	Article	IF	CITATIONS
1	Theoretical and experimental investigation of the flexible Ag nano-tree@Cu mesh SERS substrate. Journal of Alloys and Compounds, 2022, 908, 164622.	2.8	6
2	Plasma treated graphene FET sensor for the DNA hybridization detection. Talanta, 2021, 223, 121766.	2.9	28
3	Tuning plasmonic nanostructures in graphene-based nano-sandwiches using ultraviolet/ozone functionalization. Journal of Materials Science, 2021, 56, 1359-1372.	1.7	6
4	Film wrap nanoparticle system with the graphene nano-spacer for SERS detection. Optics Express, 2021, 29, 1360.	1.7	3
5	Sensitive Flexible Biosensor Based on the Three-Dimensional Layered AgNFs@Graphene Nanohybrids. Sensors and Actuators B: Chemical, 2021, 336, 129737.	4.0	6
6	Three-Dimensional Au/Ag Nanoparticle/Crossed Carbon Nanotube SERS Substrate for the Detection of Mixed Toxic Molecules. Nanomaterials, 2021, 11, 2026.	1.9	15
7	Design and mechanism of photocurrent-modulated graphene field-effect transistor for ultra-sensitive detection of DNA hybridization. Carbon, 2021, 182, 167-174.	5.4	7
8	Three-dimensional SERS sensor based on the sandwiched G@AgNPs@G/PDMS film. Talanta, 2021, 233, 122481.	2.9	5
9	Fork-shaped paper SERS sensors coated with raspberry-like bimetallic nanospheres for the detection of the boosted mixture: experimental design and applications. Journal of Materials Chemistry C, 2021, 9, 2763-2774.	2.7	13
10	MoS ₂ /graphene van der Waals heterojunctions combined with two-layered Au NP for SERS and catalysis analyse. Optics Express, 2021, 29, 38053.	1.7	7
11	Plasmonic filters based on MoS2@Au/Ag hybrids: Controllable separation, preconcentration, and sensitive SERS detection. Journal of Alloys and Compounds, 2020, 846, 156438.	2.8	11
12	The preparation of a novel iron/manganese binary oxide for the efficient removal of hexavalent chromium [Cr(<scp>vi</scp>)] from aqueous solutions. RSC Advances, 2020, 10, 10612-10623.	1.7	22
13	Donor effect dominated molybdenum disulfide/graphene nanostructure-based field-effect transistor for ultrasensitive DNA detection. Biosensors and Bioelectronics, 2020, 156, 112128.	5.3	40
14	CVD-Bi ₂ Te ₃ as a saturable absorber for various solitons in a mode-locked Er-doped fiber laser. Applied Optics, 2020, 59, 7792.	0.9	12
15	Aluminum nanoparticle films with an enhanced hot-spot intensity for high-efficiency SERS. Optics Express, 2020, 28, 9174.	1.7	26
16	<i>In-situ</i> electrospun aligned and maize-like AgNPs/PVA@Ag nanofibers for surface-enhanced Raman scattering on arbitrary surface. Nanophotonics, 2019, 8, 1719-1729.	2.9	42
17	Suspended 3D AgNPs/CNT nanohybrids for the SERS application. Applied Surface Science, 2019, 487, 1077-1083.	3.1	20
18	Suspended CNT-Based FET sensor for ultrasensitive and label-free detection of DNA hybridization. Biosensors and Bioelectronics, 2019, 137, 255-262.	5.3	46

CHENG YANG

#	Article	IF	CITATIONS
19	Label-free diagnosis of lung cancer with tissue-slice surface-enhanced Raman spectroscopy and statistical analysis. Lasers in Medical Science, 2019, 34, 1849-1855.	1.0	28
20	One-step synthesis of size-tunable gold nanoparticles/reduced graphene oxide nanocomposites using argon plasma and their applications in sensing and catalysis. Applied Surface Science, 2019, 473, 83-90.	3.1	32
21	Formation of the AuNPs/GO@MoS2/AuNPs nanostructures for the SERS application. Sensors and Actuators B: Chemical, 2019, 282, 809-817.	4.0	28
22	Gold-Nanorod-Coated Capillaries for the SERS-Based Detection of Thiram. ACS Applied Nano Materials, 2019, 2, 598-606.	2.4	55
23	Toward the highly sensitive SERS detection of bio-molecules: the formation of a 3D self-assembled structure with a uniform GO mesh between Ag nanoparticles and Au nanoparticles. Optics Express, 2019, 27, 25091.	1.7	15
24	Large energy pulses generation in a mode-locked Er-doped fiber laser based on CVD-grown Bi ₂ Te ₃ saturable absorber. Optical Materials Express, 2019, 9, 3535.	1.6	22
25	Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots. Sensors and Actuators B: Chemical, 2018, 263, 408-416.	4.0	29
26	Fast room-temperature reduction of graphene oxide by methane/argon plasma for flexible electronics. Applied Surface Science, 2018, 452, 481-486.	3.1	48
27	Synthesis of the 3D AgNF/AgNP arrays for the paper-based surface enhancement Raman scattering application. Sensors and Actuators B: Chemical, 2018, 265, 302-309.	4.0	29
28	Roles of graphene nanogap for the AgNFs electrodeposition on the woven Cu net as flexible substrate and its application in SERS. Carbon, 2018, 133, 300-305.	5.4	31
29	SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Sensors and Actuators B: Chemical, 2018, 258, 163-171.	4.0	208
30	Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis. Sensors and Actuators B: Chemical, 2018, 255, 374-383.	4.0	42
31	Multifunctional paper strip based on GO-veiled Ag nanoparticles with highly SERS sensitive and deliverable properties for high-performance molecular detection. Optics Express, 2018, 26, 10023.	1.7	13
32	Diagnosis of liver cancer based on tissue slice surface enhanced Raman spectroscopy and multivariate analysis. Vibrational Spectroscopy, 2018, 98, 82-87.	1.2	30
33	Three-dimensional nanoporous MoS2 framework decorated with Au nanoparticles for surface-enhanced Raman scattering. Chemical Physics Letters, 2017, 682, 64-70.	1.2	11
34	Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene–WS ₂ hybrid nanostructures and Au–Ag bimetallic film. RSC Advances, 2017, 7, 47177-47182.	1.7	50
35	Formation of large-area stretchable 3D graphene–nickel particle foams and their sensor applications. RSC Advances, 2017, 7, 35016-35026.	1.7	12
36	Dense AuNP/MoS ₂ hybrid fabrication on fiber membranes for molecule separation and SERS detection. RSC Advances, 2017, 7, 36516-36524.	1.7	23

CHENG YANG

#	Article	IF	CITATIONS
37	Self-assembly of the stretchable AuNPs@MoS2@GF substrate for the SERS application. Applied Surface Science, 2017, 423, 1072-1079.	3.1	9
38	Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate. Journal of Alloys and Compounds, 2017, 695, 1677-1684.	2.8	56
39	Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering. Optics Express, 2017, 25, 20631.	1.7	37
40	Adsorbable and self-supported 3D AgNPs/G@Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum. Optics Express, 2017, 25, 16437.	1.7	18
41	Controlled-layer and large-area MoS_2 films encapsulated Au nanoparticle hybrids for SERS. Optics Express, 2016, 24, 26097.	1.7	36
42	Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS. Scientific Reports, 2016, 6, 25243.	1.6	86
43	Facile synthesis of large-area and highly crystalline WS2 film on dielectric surfaces for SERS. Journal of Alloys and Compounds, 2016, 666, 412-418.	2.8	37
44	Shell-isolated graphene@Cu nanoparticles on graphene@Cu substrates for the application in SERS. Carbon, 2016, 98, 526-533.	5.4	65
45	Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering. Sensors and Actuators B: Chemical, 2016, 230, 645-652.	4.0	38
46	Selenium-assisted controlled growth of graphene–Bi2Se3 nanoplates hybrid Dirac materials by chemical vapor deposition. Applied Surface Science, 2016, 365, 357-363.	3.1	15
47	Study of the room-temperature ferromagnetic GaMnN thin films. Journal of Magnetism and Magnetic Materials, 2015, 378, 447-450.	1.0	4
48	Large-area MoS ₂ thin layers directly synthesized on Pyramid-Si substrate for surface-enhanced Raman scattering. RSC Advances, 2015, 5, 83899-83905.	1.7	28
49	Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate. Nanotechnology, 2014, 25, 165702.	1.3	40
50	Effect of annealing time on the structural and ferromagnetic properties of the GaMnN thin films. Applied Physics A: Materials Science and Processing, 2014, 114, 1003-1007.	1.1	2
51	Facile synthesis 3D flexible core-shell graphene/glass fiber via chemical vapor deposition. Nanoscale Research Letters, 2014, 9, 394.	3.1	17
52	Graphene–silver nanowire hybrid films as electrodes for transparent and flexible loudspeakers. CrystEngComm, 2014, 16, 3532.	1.3	47
53	Impact of Nitrogen Pressure on the Structural, Morphologic and Magnetic Properties of the GaMnN Thin Films. Journal of Superconductivity and Novel Magnetism, 2013, 26, 3495-3499.	0.8	1
54	Structural, morphological and magnetic characteristics of Tb-implanted GaN and AlGaN films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 349-353.	1.7	10

#	Article	IF	CITATIONS
55	Structural, morphological and magnetic properties of AlGaN thin films co-implanted with Cr and Sm ions. Journal of Magnetism and Magnetic Materials, 2013, 343, 65-68.	1.0	10