
Eric C Peters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10401120/publications.pdf Version: 2024-02-01

FDIC C DETEDS

#	Article	IF	CITATIONS
1	Comprehensive mapping of O-GlcNAc modification sites using a chemically cleavable tag. Molecular BioSystems, 2016, 12, 1756-1759.	2.9	35
2	Energy Stress Regulates Hippo-YAP Signaling Involving AMPK-Mediated Regulation of Angiomotin-like 1 Protein. Cell Reports, 2014, 9, 495-503.	2.9	244
3	Dynamic O-GlcNAc modification regulates CREB-mediated gene expression and memory formation. Nature Chemical Biology, 2012, 8, 253-261.	3.9	178
4	Identification of Serum-Derived Sphingosine-1-Phosphate as a Small Molecule Regulator of YAP. Chemistry and Biology, 2012, 19, 955-962.	6.2	219
5	Phosphofructokinase 1 Glycosylation Regulates Cell Growth and Metabolism. Science, 2012, 337, 975-980.	6.0	527
6	A small molecule accelerates neuronal differentiation in the adult rat. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16542-16547.	3.3	109
7	High-Throughput Chemical Screen Identifies a Novel Potent Modulator of Cellular Circadian Rhythms and Reveals CKIα as a Clock Regulatory Kinase. PLoS Biology, 2010, 8, e1000559.	2.6	216
8	Identification of the Plasticity-Relevant Fucose-α(1â^'2)-Galactose Proteome from the Mouse Olfactory Bulb. Biochemistry, 2009, 48, 7261-7270.	1.2	30
9	Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. Nature Chemical Biology, 2008, 4, 347-356.	3.9	203
10	Direct In-Gel Fluorescence Detection and Cellular Imaging of <i>O</i> -GlcNAc-Modified Proteins. Journal of the American Chemical Society, 2008, 130, 11576-11577.	6.6	230
11	Reversine increases the plasticity of lineage-committed mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10482-10487.	3.3	99
12	Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nature Chemical Biology, 2007, 3, 339-348.	3.9	302
13	Identification of the tyrosine phosphatase PTP-MEG2 as an antagonist of hepatic insulin signaling. Cell Metabolism, 2006, 3, 367-378.	7.2	70
14	Self-renewal of embryonic stem cells by a small molecule. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17266-17271.	3.3	296
15	Enrichment and analysis of peptide subsets using fluorous affinity tags and mass spectrometry. Nature Biotechnology, 2005, 23, 463-468.	9.4	184
16	Automated immobilized metal affinity chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry platform for profiling protein phosphorylation sites. Rapid Communications in Mass Spectrometry, 2005, 19, 57-71.	0.7	89
17	Exploring the Phosphoproteome with Mass Spectrometry. Mini-Reviews in Medicinal Chemistry, 2004, 4, 313-324.	1.1	34
18	Exploring the O-GlcNAc proteome: Direct identification of O-GlcNAc-modified proteins from the brain. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13132-13137.	3.3	288

ERIC C PETERS

#	Article	IF	CITATIONS
19	Parallel Identification ofO-GlcNAc-Modified Proteins from Cell Lysates. Journal of the American Chemical Society, 2004, 126, 10500-10501.	6.6	111
20	Robust Phosphoproteomic Profiling of Tyrosine Phosphorylation Sites from Human T Cells Using Immobilized Metal Affinity Chromatography and Tandem Mass Spectrometry. Analytical Chemistry, 2004, 76, 2763-2772.	3.2	215
21	Synthetic small molecules that control stem cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7632-7637.	3.3	366
22	Monolithic Stationary Phases for the Separation of Small Molecules. Journal of Chromatography Library, 2003, 67, 373-387.	0.1	1
23	Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 443-448.	3.3	286
24	"Molded―porous polymer monoliths: A novel format for capillary gas chromatography stationary phases. , 2000, 275, 42-47.		47
25	Monolithic Stationary Phases for Capillary Electrochromatography Based on Synthetic Polymers: Designs and Applications. Journal of High Resolution Chromatography, 2000, 23, 3-18.	2.0	157
26	Design of the monolithic polymers used in capillary electrochromatography columns. Journal of Chromatography A, 2000, 887, 3-29.	1.8	241
27	Chiral Monolithic Columns for Enantioselective Capillary Electrochromatography Prepared by Copolymerization of a Monomer with Quinidine Functionality. 1. Optimization of Polymerization Conditions, Porous Properties, and Chemistry of the Stationary Phase. Analytical Chemistry, 2000, 72, 4614-4622.	3.2	167
28	Monolithic Stationary Phases for Capillary Electrochromatography Based on Synthetic Polymers: Designs and Applications. , 2000, 23, 3.		1
29	<title>Characterization of porous polymer monoliths as flow restrictors for capillary electrophoresis on a chip</title> . , 1999, , .		1
30	Molded Rigid Polymer Monoliths as Separation Media for Capillary Electrochromatography. 2. Effect of Chromatographic Conditions on the Separation. Analytical Chemistry, 1998, 70, 2296-2302.	3.2	204
31	Chiral electrochromatography with a â€~moulded' rigid monolithic capillary column. Analytical Communications, 1998, 35, 83-86.	2.2	124
32	Molded Rigid Polymer Monoliths as Separation Media for Capillary Electrochromatography. 1. Fine Control of Porous Properties and Surface Chemistry. Analytical Chemistry, 1998, 70, 2288-2295.	3.2	389
33	Preparation of Large-Diameter "Molded―Porous Polymer Monoliths and the Control of Pore Structure Homogeneity. Chemistry of Materials, 1997, 9, 1898-1902.	3.2	97
34	Molded Rigid Polymer Monoliths as Separation Media for Capillary Electrochromatography. Analytical Chemistry, 1997, 69, 3646-3649.	3.2	417
35	Thermally responsive rigid polymer monoliths. Advanced Materials, 1997, 9, 630-633.	11.1	91

Protein Characterization by Biological Mass Spectrometry. , 0, , 145-167.

0