
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10400884/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Annealing in ITO Film Prepared at Various Argon-and-Oxygen-Mixture Ratios via Facing-Target Sputtering for Transparent Electrode of Perovskite Solar Cells. Coatings, 2022, 12, 203.	2.6	1
2	Ag ₂ 0/l̂²-Ga ₂ O ₃ Heterojunction-Based Self-Powered Solar Blind Photodetector with High Responsivity and Stability. ACS Applied Materials & Interfaces, 2022, 14, 25648-25658.	8.0	18
3	Characteristics of Aluminum-Doped Zinc Oxide Films Grown Using Facing Target Sputtering for Transparent Electrode of Heterojunction Solar Cells. Journal of Nanoscience and Nanotechnology, 2021, 21, 1799-1803.	0.9	1
4	Rod-Shaped β-FeOOH Synthesis for Hydrogen Production under Light Irradiation. ACS Omega, 2021, 6, 30562-30568.	3.5	7
5	Effect of Magnetic Field Arrangement of Facing Targets Sputtering (FTS) System on Controlling Plasma Confinement. Coatings, 2020, 10, 321.	2.6	10
6	Effective surface diffusion of nickel on single crystal β-Ga ₂ O ₃ for Schottky barrier modulation and high thermal stability. Journal of Materials Chemistry C, 2019, 7, 10953-10960.	5.5	26
7	Rectifying Characteristics of Thermally Treated Mo/SiC Schottky Contact. Coatings, 2019, 9, 388.	2.6	6
8	Numerical Simulation on Thickness Dependency and Bias Stress Test of Ultrathin ICZO Thinâ€Film Transistors Via a Solution Process. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800987.	1.8	7
9	Fabrication of copper oxide based heterojunction thin film solar cells using sputtering. Molecular Crystals and Liquid Crystals, 2018, 677, 10-18.	0.9	4
10	Effects of rapid thermal annealing on the electrical and structural properties of Mo/SiC schottky contacts. Molecular Crystals and Liquid Crystals, 2018, 677, 1-9.	0.9	0
11	Properties of ITO-stacked AgNWs films prepared on flexible substrates by low damage sputtering. Molecular Crystals and Liquid Crystals, 2018, 663, 47-54.	0.9	0
12	Photocatalytic properties of transparent oxide thin films prepared by facing target magnetron sputtering. Molecular Crystals and Liquid Crystals, 2018, 663, 55-60.	0.9	2
13	Effect of IZO passivation layer on AgNWs flexible transparent electrode. Molecular Crystals and Liquid Crystals, 2017, 645, 255-260.	0.9	Ο
14	Electrical, Optical and Photocatalytic Properties of Silver Nanowires Deposited Indium Tin Oxide Thin Film. Journal of Nanoscience and Nanotechnology, 2017, 17, 7449-7453.	0.9	0
15	Effects of sputtering power Schottky metal layers on rectifying performance of Mo–SiC Schottky contacts. Japanese Journal of Applied Physics, 2016, 55, 01AC05.	1.5	1
16	Fabrication of Ag nanowire and Al-doped ZnO hybrid transparent electrodes. Japanese Journal of Applied Physics, 2016, 55, 01AE14.	1.5	8
17	Achieving Enhanced Dye-Sensitized Solar Cell Performance by TiCl ₄ /Al ₂ O ₃ Doped TiO ₂ Nanotube Array Photoelectrodes. Journal of Nanomaterials, 2015, 2015, 1-6.	2.7	5
18	Synergistic effect of TiCl ₄ –ZnO treated TiO ₂ nanotubes in dye-sensitized solar cell. Japanese Journal of Applied Physics, 2015, 54, 06FK02.	1.5	2

#	Article	IF	CITATIONS
19	Fabrication of ZnO/Ag Nanowire/ZnO Thin Films for Optoelectronic Applications. Molecular Crystals and Liquid Crystals, 2015, 622, 134-139.	0.9	6
20	Low-voltage Sputtering Deposition of Transparent Conductive GAZO Thin Films for Minimizing Damage to Organic Layers. Molecular Crystals and Liquid Crystals, 2015, 621, 47-52.	0.9	1
21	Characteristics of Dye-Sensitized Solar Cells Using TiO ₂ Nanotube Arrays with Large Surface Area by Spin-Coating Nanoparticle. Molecular Crystals and Liquid Crystals, 2015, 620, 91-99.	0.9	1
22	Effects of post-annealing treatment on the properties of reactive sputtered cuprous-oxide thin films. Journal of the Korean Physical Society, 2015, 67, 1013-1017.	0.7	8
23	Properties of p-type N-doped Cu ₂ 0 thin films prepared by reactive sputtering. Japanese Journal of Applied Physics, 2014, 53, 11RA10.	1.5	14
24	Thickness Dependence of WO _{3-x} Thin Films for Electrochromic Device Application. Molecular Crystals and Liquid Crystals, 2014, 598, 54-61.	0.9	21
25	Enhancing performance of dye-sensitized solar cells by TiCl ₄ treatment at different concentrations. Japanese Journal of Applied Physics, 2014, 53, 06JG10.	1.5	3
26	Efficiency Improvement of Dye-Sensitized Solar Cells Using WO3. Molecular Crystals and Liquid Crystals, 2014, 602, 81-87.	0.9	6
27	Effect of dye-sensitized solar cells based on the anodizing TiO ₂ nanotube array/nanoparticle double-layer electrode. Japanese Journal of Applied Physics, 2014, 53, 11RB02.	1.5	3
28	Characteristics of Ga-Al Doped Zinc Oxide Thin Films Deposited by Facing Targets Sputtering. Molecular Crystals and Liquid Crystals, 2014, 600, 56-62.	0.9	1
29	Properties of ITO/Ga-Al Doped ZnO Bilayer Thin Film for Saving ITO Material. Molecular Crystals and Liquid Crystals, 2014, 602, 17-25.	0.9	1
30	Enhancing Performance of Dye-Sensitized Solar Cell Influenced by Phosphor ZnGa2O4. Molecular Crystals and Liquid Crystals, 2014, 598, 40-46.	0.9	1
31	Characteristics of the Dye-Sensitized Solar Cells Using TiO2 Nanotubes Treated with TiCl4. Materials, 2014, 7, 3522-3532.	2.9	64
32	The effect of dye-sensitized solar cell based on the composite layer by anodic TiO2 nanotubes. Nanoscale Research Letters, 2014, 9, 671.	5.7	16
33	Properties of Cu ₂ 0 Thin Films for All-Oxide Solar Cells. Molecular Crystals and Liquid Crystals, 2014, 598, 62-68.	0.9	2
34	Improving the performance of dye-sensitized solar cells by using the conversion luminescence of a phosphor. Journal of the Korean Physical Society, 2014, 65, 1682-1686.	0.7	3
35	Influence of Fe ₂ O ₃ Doping on TiO ₂ Electrode for Enhancement Photovoltaic Efficiency of Dye-Sensitized Solar Cells. Molecular Crystals and Liquid Crystals, 2014, 600, 39-46.	0.9	12
36	Synthesis and Characterization of WO3Doped TiO2Particle/Nanowire Layer in Dye-Sensitized Solar Cells. Molecular Crystals and Liquid Crystals, 2014, 598, 32-39.	0.9	10

#	Article	IF	CITATIONS
37	Working Pressure Dependence of WO3-xThin Films Prepared by Reactive Facing Targets Sputtering. Molecular Crystals and Liquid Crystals, 2014, 602, 185-192.	0.9	2
38	Enhancing Performance of Dye-Sensitized Solar Cell Utilizing by Phosphor Layer (YAG:Ce). Molecular Crystals and Liquid Crystals, 2014, 602, 88-95.	0.9	1
39	Enhancing Photoelectrical Performance of Dye-Sensitized Solar Cell Using Phosphor Photoelectrode. Molecular Crystals and Liquid Crystals, 2014, 602, 96-103.	0.9	Ο
40	Preparation of a Phosphor/TiO2 nanoparticle composite layer for applications in dye-sensitized solar cells. Journal of the Korean Physical Society, 2014, 65, 387-391.	0.7	1
41	Al2O3 Doping of TiO2 electrodes and applications in dye-sensitized solar cells. Journal of the Korean Physical Society, 2014, 65, 368-371.	0.7	Ο
42	Investigation of the effect of oxygen gas on properties of GAZO thin films fabricated by facing targets sputtering system. Semiconductor Science and Technology, 2014, 29, 075007.	2.0	15
43	Preparation of doping metal TiO2 particle/nanotube composite layer and their applications in dye-sensitized solar cells. Metals and Materials International, 2013, 19, 1355-1359.	3.4	1
44	Effects of intermediate GAZO layer thickness on the properties of GAZO/Ag/GAZO/Ag/GAZO film. Thin Solid Films, 2013, 549, 70-73.	1.8	6
45	Electrochromic Properties of Tungsten Oxide Films Prepared by Reactive Sputtering. Japanese Journal of Applied Physics, 2013, 52, 05EC03.	1.5	5
46	Effect of Photoelectrode with Phosphor-Containing TiO2Layer for Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 2013, 52, 11NM03.	1.5	1
47	Properties of WO _{3-x} Electrochromic Thin Film Prepared by Reactive Sputtering with Various Post Annealing Temperatures. Japanese Journal of Applied Physics, 2013, 52, 11NB09.	1.5	19
48	Characteristics of Ga-Al Doped ZnO Thin Films with Plasma Treatment Prepared by Using Facing Target Sputtering Method. Journal of Nanoscience and Nanotechnology, 2013, 13, 6293-6295.	0.9	2
49	Properties of AZO/Ag/AZO Multilayer Thin Film Deposited on Polyethersulfone Substrate. Transactions on Electrical and Electronic Materials, 2013, 14, 9-11.	1.9	32
50	Properties of Ga-Al Doped ZnO with Various Thicknesses Prepared by Facing Targets Sputtering Method. Molecular Crystals and Liquid Crystals, 2012, 566, 80-86.	0.9	3
51	Effect of Post Annealing in Various Atmospheric Environment Applied to ZnO:Ga Films. Molecular Crystals and Liquid Crystals, 2012, 564, 113-120.	0.9	3
52	Characteristics of AZO/Cu/AZO Multilayer Thin Films Prepared on Polyethersulfone Substrate at Room Temperature. Molecular Crystals and Liquid Crystals, 2012, 564, 121-129.	0.9	12
53	Effect of ZnO Passivating Layer Using RF-Sputtered for Dye-Sensitized Solar Cells. Molecular Crystals and Liquid Crystals, 2012, 565, 131-137.	0.9	2
54	Effects of intermediate metal layer on the properties of Ga–Al doped ZnO/metal/Ga–Al doped ZnO multilayers deposited on polymer substrate. Materials Research Bulletin, 2012, 47, 2895-2897.	5.2	11

#	Article	IF	CITATIONS
55	Electrical and Optical Properties of IZTO Thin Film for OLED Anode. Molecular Crystals and Liquid Crystals, 2012, 567, 78-85.	0.9	1
56	Properties of GAZO/Ag/GAZO multilayer films prepared by FTS system. Microelectronic Engineering, 2012, 89, 124-128.	2.4	9
57	Nanostructured TiO2 Films for Dye-Sensitized Solar Cells Prepared by the Sol–Gel Method. Journal of Nanoscience and Nanotechnology, 2011, 11, 10971-10975.	0.9	17
58	Properties of indium tin oxide thin films prepared on the oxygen plasma-treated polycarbonate substrate. Thin Solid Films, 2011, 519, 6844-6848.	1.8	7
59	Properties of TiO2 Films Prepared for Use in Dye-sensitized Solar Cells by Using the Sol-gel Method at Different Catalyst Concentrations. Journal of the Korean Physical Society, 2010, 57, 1049-1053.	0.7	28
60	Properties of Indium-Zinc-Oxide Thin Films Prepared by Facing Targets Sputtering at Room Temperature. Journal of the Korean Physical Society, 2009, 54, 1267-1272.	0.7	14
61	Preparation of ITO and IZO thin films by using Facing Target Sputtering (FTS) method. Journal of the Korean Physical Society, 2009, 55, 1996-2001.	0.7	19
62	Thin film properties by facing targets sputtering system. Applied Surface Science, 2001, 169-170, 410-414.	6.1	24