List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1040088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Substantially boosted photocatalytic detoxification activity of TiO ₂ benefited from Eu doping. Environmental Technology (United Kingdom), 2023, 44, 1313-1321.	2.2	1
2	lonic liquids assisted preparation of BiPO ₄ photocatalyst with enhanced photocatalytic activity for tetracycline and rhodamine B removal. Environmental Technology (United Kingdom), 2023, 44, 2669-2678.	2.2	1
3	Bridging role of Ag ⁰ particles formed <i>in-situ</i> on Ag ₃ PO ₄ /BiPO ₄ composites for enhanced solar-driven photocatalytic performance. Inorganic and Nano-Metal Chemistry, 2022, 52, 563-569.	1.6	0
4	Improved visible light responsive photocatalytic hydrogen production over g-C3N4 with rich carbon vacancies. Ceramics International, 2022, 48, 1439-1445.	4.8	30
5	Photocatalytic enhancement mechanism insight for BiVO4 induced by plasma treatment under different atmospheres. Journal of Alloys and Compounds, 2022, 890, 161883.	5.5	23
6	In-situ fabrication of Bi0/BiVO4 photocatalysts with boosted photocatalytic activity. Materials Letters, 2022, 306, 130802.	2.6	9
7	Fabrication of BiOCl with adjustable oxygen vacancies and greatly elevated photocatalytic activity by using bamboo fiber surface embellishment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127892.	4.7	14
8	3-Mercaptopropionic acid assisted in-situ construction of thin Bi2S3/BiOCl composites with significantly improved photocatalytic activity. Chemical Physics Letters, 2022, 787, 139205.	2.6	8
9	BiO and oxygen vacancies co-induced enhanced visible-light photocatalytic detoxication of three typical contaminants over Bi2WO6 treated by NaBH4 solution. Surfaces and Interfaces, 2022, 28, 101648.	3.0	4
10	Fabrication of tunable oxygen vacancies on BiOCl modified by spiral carbon fiber for highly efficient photocatalytic detoxification of typical pollutants. Applied Surface Science, 2022, 578, 152122.	6.1	20
11	Photocatalytic performance of rich OVs-BiOCl modified by polyphenylene sulfide. Advanced Powder Technology, 2022, 33, 103427.	4.1	17
12	Construction of flower-like Ag/AgBr/BiOBr heterostructures with boosted photocatalytic activity. Inorganic Chemistry Communication, 2022, 137, 109254.	3.9	16
13	In-situ construction of Bi2WO6/ZnWO4 heterojunctions with enhanced photocatalytic performance toward RhB degradation. Materials Letters, 2022, 312, 131707.	2.6	13
14	Photocatalytic property of MWCNTs/BiOI with rich oxygen vacancies. Materials Research Bulletin, 2022, 150, 111763.	5.2	11
15	Fabrication of 3D flower-like OVs-Bi2SiO5 hierarchical microstructures for visible light-driven removal of tetracycline. Surfaces and Interfaces, 2022, 29, 101787.	3.0	8
16	Rich oxygen vacancies facilitated visible light-driven removal of phenol and Cr(VI) over Bi2WO6 decorated by sorghum straw carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128534.	4.7	6
17	Visible-light driven efficient elimination of organic hazardous and Cr (VI) over BiOCl modified by Chinese Baijiu distillers' grain-based biochar. Journal of Industrial and Engineering Chemistry, 2022, 107, 472-482.	5.8	7
18	Tunable oxygen vacancies facilitated removal of PFOA and RhB over BiOCl prepared with alcohol ether sulphate. Applied Surface Science, 2022, 590, 152891.	6.1	21

#	Article	IF	CITATIONS
19	In-situ preparation of S-scheme BiOI/BiVO4 heterojunctions with enhanced photocatalytic performance. Solid State Sciences, 2022, 129, 106908.	3.2	7
20	Photocatalytic properties of N-doped Bi0/BiOI with abundant OVs for efficient detoxification of hazardous contaminants from environment. Surfaces and Interfaces, 2022, 31, 102051.	3.0	4
21	Enhanced visible light-driven photocatalytic destruction of decontaminants over Bi2O3/BiVO4 heterojunctions with rich oxygen vacancies. Chemical Physics Letters, 2022, 801, 139722.	2.6	5
22	In-situ fabrication and photocatalytic activity of AgBr/Ag3PO4 heterojunctions. Materials Letters, 2022, 323, 132544.	2.6	7
23	P123-assisted hydrothermal synthesis of Ag2MoO4 with enhanced photocatalytic performance. Inorganic Chemistry Communication, 2022, 141, 109613.	3.9	4
24	Effectively destruction of rhodamine B and perfluorooctanoic acid over BiOCl with boosted separation ability of carriers benefited from tunable oxygen vacancies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129470.	4.7	7
25	Polyaniline-assisted hydrothermal synthesis of TiO2 with tunable OVs and enhanced photocatalytic performance for destruction of rhodamine B and ciprofloxacin. Journal of Physics and Chemistry of Solids, 2022, 169, 110824.	4.0	4
26	Photocatalytic properties of BiOBr/g-C3N4 heterojunctions originated from S-scheme separation and transfer of interfacial charge pairs. Optical Materials, 2022, 131, 112649.	3.6	11
27	Microwave-assisted preparation of flower-like C60/BiOBr with significantly enhanced visible-light photocatalytic performance. Applied Surface Science, 2021, 540, 148340.	6.1	44
28	Excellent visible light responsive photocatalytic behavior of N-doped TiO2 toward decontamination of organic pollutants. Journal of Hazardous Materials, 2021, 403, 123857.	12.4	156
29	Enhanced photocatalytic activity of N134 carbon black modified Bi2WO6 benefited from ample oxygen vacancies and boosted separation of photoexcited carriers. Materials Research Bulletin, 2021, 133, 111075.	5.2	16
30	Preparation of cypress leave-like Ag2WO4/BiVO4 heterojunctions with remarkably enhanced photocatalytic activity. Materials Letters, 2021, 283, 128793.	2.6	15
31	Photoactivity of Bi2WO6 synthesized by a solvothermal method using the different solvents. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	6
32	Preparation of an In ₂ S ₃ /TiO ₂ Heterostructure for Enhanced Activity in Carbon Dioxide Photocatalytic Reduction. ChemPhotoChem, 2021, 5, 438-444.	3.0	12
33	Oxygen vacancies enriched BiOBr with boosted photocatalytic behaviors. Inorganic Chemistry Communication, 2021, 126, 108450.	3.9	33
34	In-situ construction of 3D nanoflower-like BiOI/Bi2SiO5 heterojunctions with enhanced photocatalytic performance for removal of decontaminants originated from a step-scheme mechanism. Applied Surface Science, 2021, 544, 148883.	6.1	44
35	In-situ fabrication of Bi/BiVO4 heterojunctions with N-doping for efficient elimination of contaminants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617, 126224.	4.7	22
36	Polyethylene glycol assisted preparation of AgI with enhanced photocatalytic activity. Solid State Sciences, 2021, 116, 106610.	3.2	6

#	Article	IF	CITATIONS
37	Enhanced photocatalytic performance of three-dimensional microstructure Bi2SiO5 by ionic liquid assisted hydrothermal synthesis. Journal of Physics and Chemistry of Solids, 2021, 154, 110063.	4.0	19
38	Carbon nanofibers induced tunable oxygen vacancies on BiOCl for high efficient destruction of decontaminants. Surfaces and Interfaces, 2021, 25, 101247.	3.0	4
39	Oxygen vacancies facilitated visible light photoactivity of CdWO4 prepared by ionic liquid assisted hydrothermal method. Ceramics International, 2021, 47, 26572-26578.	4.8	16
40	Boosted photocatalytic removal of tetracycline on S-scheme Bi12O17Cl2/α-Bi2O3 heterojunctions with rich oxygen vacancies. Applied Surface Science, 2021, 563, 150246.	6.1	40
41	Enhanced photocatalytic performance of TiO2/BiOI heterojunctions benefited from effective separation of photogenerated carriers. Chemical Physics Letters, 2021, 780, 138966.	2.6	13
42	Water hyacinth powder -assisted preparation of defects-rich and flower-like BiOI/Bi5O7I heterojunctions with excellent visible light photocatalytic activity. Surfaces and Interfaces, 2021, 27, 101470.	3.0	9
43	Carbon quantum dots modified BiOCl for highly efficient degradation of contaminants benefited from effective generation of ·O2â^. Materials Science in Semiconductor Processing, 2021, 136, 106165.	4.0	26
44	Photocatalytic properties of flower-like BiOBr/BiOCl heterojunctions in-situ constructed by a reactable ionic liquid. Inorganic Chemistry Communication, 2021, 134, 109063.	3.9	17
45	Metal-Organic Frameworks With Variable Valence Metal-Photoactive Components: Emerging Platform for Volatile Organic Compounds Photocatalytic Degradation. Frontiers in Chemistry, 2021, 9, 749839.	3.6	10
46	Enhanced simulated sunlightâ€driven photocatalytic performance of SnWO 4 prepared in the presence of cetyltrimethylammonium bromide. Environmental Progress and Sustainable Energy, 2020, 39, e13314.	2.3	5
47	In-situ construction of flower-like BiOBr/BiOCl heterojunctions assembled by thin sheets using an ionic liquid. Materials Letters, 2020, 259, 126766.	2.6	22
48	Ionic liquid assisted hydrothermal preparation of TiO2 with largely enhanced photocatalytic performance originated from effective separation of photoinduced carriers. Journal of Physics and Chemistry of Solids, 2020, 139, 109323.	4.0	12
49	Direct Z-scheme charge separation mechanism and photocatalytic properties of (BiO)2CO3-BiOCl composites prepared in-situ. Chemical Physics, 2020, 530, 110597.	1.9	9
50	lonic liquid-assisted preparation of thin Bi2SiO5 nanosheets for effective photocatalytic degradation of RhB. Materials Letters, 2020, 261, 127117.	2.6	17
51	P123-assisted preparation of Ag/Ag2O with significantly enhanced photocatalytic performance. Solid State Sciences, 2020, 99, 106062.	3.2	10
52	lonic liquid assisted in-situ construction of S-scheme BiOI/Bi2WO6 heterojunctions with improved sunlight-driven photocatalytic performance. Inorganic Chemistry Communication, 2020, 121, 108192.	3.9	23
53	One-pot hydrothermal synthesis of MXene Ti3C2/TiO2/BiOCl ternary heterojunctions with improved separation of photoactivated carries and photocatalytic behavior toward elimination of contaminants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125239.	4.7	44
54	Red Phosphorus/Carbon Nitride van der Waals Heterostructure for Photocatalytic Pure Water Splitting under Wide-Spectrum Light Irradiation. ACS Sustainable Chemistry and Engineering, 2020, 8, 13459-13466.	6.7	46

#	Article	IF	CITATIONS
55	In-situ fabrication of Z-scheme CdS/BiOCl heterojunctions with largely improved photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124880.	4.7	53
56	One-pot hydrothermal preparation of Br-doped BiVO4 with enhanced visible-light photocatalytic activity. Solid State Sciences, 2020, 105, 106285.	3.2	27
57	One-pot preparation of double S-scheme Bi2S3/MoO3/C3N4 heterojunctions with enhanced photocatalytic activity originated from the effective charge pairs partition and migration. Applied Surface Science, 2020, 527, 146788.	6.1	37
58	One-pot solvothermal fabrication of S-scheme OVs-Bi2O3/Bi2SiO5 microsphere heterojunctions with enhanced photocatalytic performance toward decontamination of organic pollutants. Applied Surface Science, 2020, 527, 146775.	6.1	88
59	Preparation of AgCl with enhanced photocatalytic activity using ionic liquid as chlorine source. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	2
60	Spiral carbon fibers modified Bi2WO6 with enhanced photocatalytic activity. Journal of Physics and Chemistry of Solids, 2020, 141, 109430.	4.0	19
61	lonic liquid-assisted hydrothermal preparation of BiOI/BiOCl heterojunctions with enhanced separation efficiency of photo-generated charge pairs and photocatalytic performance. Inorganic Chemistry Communication, 2020, 113, 107806.	3.9	44
62	Influence of different solvents on the preparation and photocatalytic property of BiOCl toward decontamination of phenol and perfluorooctanoic acid. Chemical Physics Letters, 2020, 748, 137401.	2.6	21
63	Preparation of novel Ag/AgVO3/BiVO4 heterojunctions with significantly enhanced visible light-driven photocatalytic performance originated from Z-scheme separation of photogenerated charge pairs. Inorganic Chemistry Communication, 2020, 116, 107904.	3.9	25
64	Ionic liquid assisted one-pot solvothermal preparation of BiOI/BiOBr heterojunctions with excellent photocatalytic activity. Materials Letters, 2020, 271, 127812.	2.6	7
65	Preparation and characterization of novel Ag/Ag2WO4/ZnWO4 heterojunctions with significantly enhanced sunlight-driven photocatalytic performance. Solid State Sciences, 2019, 95, 105923.	3.2	15
66	Carbon black decorated BiOCl with largely enhanced photocatalytic activity toward removal of RhB. Solid State Sciences, 2019, 97, 105989.	3.2	28
67	Photocatalytic activity of TiO2 prepared by different solvents through a solvothermal approach. Solid State Sciences, 2019, 98, 106024.	3.2	7
68	Fabrication of Ag/AgBr/AgVO3 heterojunctions with improved photocatalytic performance originated from enhanced separation rate of photogenerated carriers. Solid State Sciences, 2019, 94, 106-113.	3.2	28
69	Enhanced photocatalytic degradation of phenol and rhodamine B over flower-like BiOBr decorated by C70. Materials Research Bulletin, 2019, 118, 110521.	5.2	16
70	Fabrication of Bi2SiO5 hierarchical microspheres with an efficient photocatalytic performance for rhodamine B and phenol removal. Materials Research Bulletin, 2019, 116, 50-58.	5.2	35
71	Preparation and photocatalytic performance of MWCNTs/BiOCI: Evidence for the superoxide radical participation in the degradation mechanism of phenol. Applied Surface Science, 2019, 480, 395-403.	6.1	59
72	F127-assisted hydrothermal preparation of BiOI with enhanced sunlight-driven photocatalytic activity originated from the effective separation of photo-induced carriers. Solid State Sciences, 2019, 90, 1-8.	3.2	24

#	Article	IF	CITATIONS
73	Insight into visible light-driven photocatalytic performance of direct Z-scheme Bi2WO6/BiOI composites constructed in -situ. Chemical Physics Letters, 2019, 716, 134-141.	2.6	33
74	Improved photocatalytic performance of flower-like BiOBr/BiOCl heterojunctions prepared by an ionic liquid assisted one-step hydrothermal method. Materials Letters, 2019, 238, 147-150.	2.6	21
75	Effective photoinduced charge separation and photocatalytic activity of hierarchical microsphere-like C60/BiOCl. Applied Surface Science, 2019, 465, 249-258.	6.1	70
76	Opposite photocatalytic oxidation behaviors of BiOCl and TiO2: Direct hole transfer vs. indirect OH oxidation. Applied Catalysis B: Environmental, 2019, 241, 514-520.	20.2	95
77	Enhanced photocatalytic activity of BiOCl by C70 modification and mechanism insight. Applied Surface Science, 2018, 443, 497-505.	6.1	67
78	Enhanced sunlight-driven photocatalytic performance of Bi-doped CdMoO 4 benefited from efficient separation of photogenerated charge pairs. Solid State Sciences, 2018, 80, 147-154.	3.2	19
79	In-situ loading of (BiO)2CO3 on g-C3N4 with promoted solar-driven photocatalytic performance originated from a direct Z-scheme mechanism. Materials Science in Semiconductor Processing, 2018, 82, 97-103.	4.0	24
80	SDBS-assisted hydrothermal treatment of TiO2 with improved photocatalytic activity. Materials Letters, 2018, 212, 147-150.	2.6	25
81	Remarkably enhanced sunlight-driven photocatalytic performance of TiO 2 by facilely modulating the surface property. Materials Science in Semiconductor Processing, 2018, 74, 109-115.	4.0	8
82	Large enhancement of sunlight-driven photocatalytic performance of CdMoO4 prepared by SDBS-assisted microwave hydrothermal method. Materials Letters, 2018, 228, 421-423.	2.6	9
83	In-situ construction of direct Z-scheme Bi2WO6/g-C3N4 composites with remarkably promoted solar-driven photocatalytic activity. Materials Chemistry and Physics, 2018, 217, 207-215.	4.0	40
84	Plantâ€Proteinâ€Modified TiO ₂ (SPI@TiO ₂) for Photodegradation of Dyes. ChemistrySelect, 2018, 3, 3127-3132.	1.5	2
85	Remarkably enhanced photoinduced charge separation rate of Bi2WO6 by Cu2+ doping. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	17
86	Photo-induced charge separation properties of NiO/Bi 2 O 3 heterojuctions with efficient simulated solar-driven photocatalytic performance. Current Applied Physics, 2017, 17, 484-487.	2.4	15
87	Enhanced photocatalytic performance of Ag 2 O/BiOF composite photocatalysts originating from efficient interfacial charge separation. Applied Surface Science, 2017, 416, 666-671.	6.1	48
88	PVA-assisted hydrothermal preparation of BiOF with remarkably enhanced photocatalytic performance. Materials Letters, 2017, 201, 35-38.	2.6	17
89	Enhanced separation efficiency of photo-induced charge pairs and sunlight-driven photocatalytic performance of TiO2 prepared with the assistance of NH4Cl. Journal of Sol-Gel Science and Technology, 2017, 83, 174-180.	2.4	19
90	Charge separation behaviors of novel AgI/BiOI heterostructures with enhanced solar-photocatalytic performance. Current Applied Physics, 2017, 17, 1202-1207.	2.4	17

#	Article	IF	CITATIONS
91	Synthesis and characterization of novel Ag2CO3/g-C3N4 composite photocatalysts with excellent solar photocatalytic activity and mechanism insight. Molecular Catalysis, 2017, 435, 91-98.	2.0	54
92	Enhanced solar photocatalytic performance of (BiO)2CO3 prepared with the assistance of ionic liquid. Materials Letters, 2017, 192, 157-160.	2.6	13
93	One-pot hydrothermal preparation of BiOBr/BiPO4 with improved photocatalytic performance originated from remarkably enhanced separation of electron-hole pairs. Current Applied Physics, 2017, 17, 1707-1713.	2.4	14
94	LiGaGe ₂ S ₆ : A Chalcogenide with Good Infrared Nonlinear Optical Performance and Low Melting Point. Inorganic Chemistry, 2017, 56, 13267-13273.	4.0	51
95	Fabrication of CdS modified BiVO4 with enhanced sunlight photocatalytic performance. Inorganic and Nano-Metal Chemistry, 2017, 47, 1728-1732.	1.6	2
96	Enhanced photocatalytic performance of Ag/AgCl/SnO 2 originating from efficient formation of · O 2 â°'. Materials Chemistry and Physics, 2017, 201, 35-41.	4.0	26
97	Wide band gap design of new chalcogenide compounds: KSrPS ₄ and CsBaAsS ₄ . RSC Advances, 2017, 7, 38044-38051.	3.6	20
98	A flower-like TiO2 with photocatalytic hydrogen evolution activity modified by Zn(II) porphyrin photocatalysts. Journal of Materials Science: Materials in Electronics, 2017, 28, 2123-2127.	2.2	10
99	Enhanced photo-induced charge separation and solar-driven photocatalytic performance of Ag/g-C ₃ N ₄ . Inorganic and Nano-Metal Chemistry, 2017, 47, 614-617.	1.6	3
100	Enhanced Simulated Sun Light Photocatalytic Activity of α-Fe2O3 Modified g-C3N4 prepared In-situ. Journal of Advanced Oxidation Technologies, 2016, 19, .	0.5	1
101	Enhanced Sunlight Photocatalytic Performance of N,S-Codoped TiO ₂ Prepared by Sol-Gel Method Using Ammonium Thiocyanate. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 1596-1604.	0.6	3
102	Bovine serum albumin modified ZnO to degrade organic dyes under ultraviolet light irradiation. New Journal of Chemistry, 2016, 40, 5604-5610.	2.8	16
103	Improved solar-driven photocatalytic performance of Ag2CO3/(BiO)2CO3 prepared in-situ. Materials Research Bulletin, 2016, 77, 185-189.	5.2	15
104	Charge separation and photocatalytic properties of BiOI prepared by ionic liquid-assisted hydrothermal method. Materials Letters, 2016, 183, 248-250.	2.6	16
105	Z-scheme TiO 2 /g-C 3 N 4 composites with improved solar-driven photocatalytic performance deriving from remarkably efficient separation of photo-generated charge pairs. Materials Research Bulletin, 2016, 84, 65-70.	5.2	44
106	Effects of the molar ratio on the photo-generated charge separation behaviors and photocatalytic activities of (BiO)2CO3-BiOBr composites. Solid State Sciences, 2016, 60, 11-16.	3.2	7
107	Comparative Investigation of Simulated Solar-driven Photocatalytic Performance of g-C3N4 Prepared by Different Precursors. Journal of Advanced Oxidation Technologies, 2016, 19, .	0.5	0
108	Efficient charge separation of Ag2CO3/ZnO composites prepared by a facile precipitation approach and its dependence on loading content of Ag2CO3. Materials Science in Semiconductor Processing, 2016, 52, 62-67.	4.0	27

#	Article	IF	CITATIONS
109	Improved solar-driven photocatalytic performance of BiOI decorated TiO 2 benefiting from the separation properties of photo-induced charge carriers. Solid State Sciences, 2016, 52, 106-111.	3.2	20
110	Charge separation properties of (BiO)2CO3/BiOI heterostructures with enhanced solar-driven photocatalytic activity. Current Applied Physics, 2016, 16, 240-244.	2.4	21
111	Improved solar-driven photocatalytic performance of Ag3PO4/ZnO composites benefiting from enhanced charge separation with a typical Z-scheme mechanism. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	18
112	Efficient solar-driven photocatalytic performance of BiOBr benefiting from enhanced charge separation rate. Materials Letters, 2016, 163, 175-178.	2.6	18
113	Enhanced Photo-induced Charge Separation and Simulated Solar Photocatalytic Activity of α-Fe2O3/BiOCl Prepared In-situ. Journal of Advanced Oxidation Technologies, 2015, 18, .	0.5	0
114	Synthesis of Rodâ€Like gâ€C ₃ N ₄ /ZnS Composites with Superior Photocatalytic Activity for the Degradation of Methyl Orange. European Journal of Inorganic Chemistry, 2015, 2015, 4108-4115.	2.0	53
115	Enhanced Visible Light Photocatalytic Activity of Br-Doped Bismuth Oxide Formate Nanosheets. Molecules, 2015, 20, 19189-19202.	3.8	12
116	Fabrication and Improved Photocatalytic Performance of Pd/α-Fe ₂ O ₃ . Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 673-677.	0.6	4
117	Fabrication of Dy-doped BiVO ₄ with Enhanced Solar Light Photocatalytic Performance. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 476-481.	0.6	10
118	Enhanced photo-induced charge separation and sun light-driven photocatalytic performance of g-C3N4 modified by phosphate. Applied Physics A: Materials Science and Processing, 2015, 120, 829-833.	2.3	4
119	Photocatalytic Activity of TiO ₂ Loaded on BaBiO ₃ Toward Degradation of Gaseous Benzene. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 1116-1120.	0.6	4
120	Photoinduced charge separation and simulated solar-driven photocatalytic performance of C–N-co-doped TiO2 prepared by sol–gel method. Journal of Sol-Gel Science and Technology, 2015, 76, 332-340.	2.4	9
121	Enhanced photo-induced charge separation and solar-driven photocatalytic activity of g-C3N4 decorated by SO42â^3. Materials Science in Semiconductor Processing, 2015, 40, 508-515.	4.0	22
122	Photodegradation of Rhodamine B over a novel photocatalyst of feather keratin decorated CdS under visible light irradiation. New Journal of Chemistry, 2015, 39, 7112-7119.	2.8	31
123	Enhanced visible light photocatalytic activity of sulfated CuO–Bi2O3 photocatalyst. Applied Physics A: Materials Science and Processing, 2015, 120, 977-982.	2.3	5
124	P123-assisted hydrothermal synthesis of BiOI with enhanced photocatalytic performance. Materials Letters, 2015, 153, 179-181.	2.6	13
125	PEG-assisted hydrothermal synthesis of BiOCl with enhanced photocatalytic performance. Applied Physics A: Materials Science and Processing, 2015, 119, 1203-1208.	2.3	38
126	Improved Sun light photocatalytic activity of α-Fe2O3 prepared with the assistance of CTAB. Materials Letters, 2015, 160, 526-528.	2.6	23

JUNBO ZHONG

#	Article	IF	CITATIONS
127	Photocatalytic decolorization of methyl orange solution with KIO ₃ . Desalination and Water Treatment, 2015, 54, 2252-2258.	1.0	3
128	Improved photocatalytic decolorization of methyl orang over Pdâ€doped Bi ₂ O ₃ . Environmental Progress and Sustainable Energy, 2014, 33, 1229-1234.	2.3	3
129	Enhanced photocatalytic activity of In2O3-decorated TiO2. Applied Physics A: Materials Science and Processing, 2014, 115, 1231-1238.	2.3	25
130	Enhanced photocatalytic activity of sulfated silica-titania composites prepared by impregnation using ammonium persulfate solution. Materials Science in Semiconductor Processing, 2014, 26, 62-68.	4.0	7
131	Effect of several reagents on decolorization of methyl orange solution with KIO ₄ . Desalination and Water Treatment, 2014, 52, 6206-6210.	1.0	4
132	Photo-induced charge separation and photocatalytic activity of Ga-doped SnO2. Applied Physics A: Materials Science and Processing, 2014, 116, 2149-2156.	2.3	10
133	Enhanced Photocatalytic Activity of Bi-doped α-Fe2O3. Journal of Advanced Oxidation Technologies, 2014, 17, .	0.5	1
134	Enhanced Photocatalytic Activity of Y and Pd-co-doped Bi2O3 Prepared by Parallel Flow Co-precipitation Method. Journal of Advanced Oxidation Technologies, 2014, 17, .	0.5	0
135	Effect of SiO2 Content on the Catalytic Performance of SiO2-TiO2 Composite Photocatalyst. Journal of Advanced Oxidation Technologies, 2014, 17, .	0.5	1
136	Enhanced photocatalytic activity of Fe2O3 decorated Bi2O3. Applied Surface Science, 2013, 284, 527-532.	6.1	51
137	Synthesis, characterization and solar photocatalytic performance of In2O3-decorated Bi2O3. Materials Science in Semiconductor Processing, 2013, 16, 1808-1812.	4.0	8
138	Hydrolytic reactivities of p-nitrophenyl picolinate accelerated by Schiff base Co(II) complexes in micellar solutions. Colloid and Polymer Science, 2010, 288, 347-352.	2.1	11
139	Effects of Various Schiff Base Ligands and Micelles on the Hydrolytic Kinetics of <i>p</i> -Nitrophenyl Picolinate. Journal of Dispersion Science and Technology, 2010, 31, 962-967.	2.4	0
140	Hydrolytic cleavage of bis(p-nitrophenyl) phosphate by Schiff base MnIII complexes containing morpholine pendants in Gemini 16-6-16 micelles. Journal of Chemical Sciences, 2008, 120, 411-417.	1.5	21
141	Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeO4: Kinetic model and degradation mechanisms. Journal of Hazardous Materials, 2007, 139, 323-331.	12.4	59
142	Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeO4: Preparation and photocatalytic behavior of TiO2/Sr2CeO4. Journal of Hazardous Materials, 2007, 140, 200-204.	12.4	28
143	Enhanced photocatalytic activity of C-N-S-tridoped TiO2 towards degradation of methyl orange and phenol. , 0, 75, 195-201.		5
144	Thiourea-assisted sol-gel preparation of ZnO with enhanced photocatalytic performance originated from promoted separation rate of photo-induced carriers. , 0, 163, 281-285.		1

¹⁴⁵ Visible light-driven photocatalytic properties of BiOI-based photocatalyst prepared by different solvents. , 0, 182, 253-259.	3