Seounghun Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10399945/publications.pdf

Version: 2024-02-01

687363 752698 21 472 13 citations h-index papers

20 g-index 22 22 22 743 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanoparticle delivery of recombinant IL-2 (BALLkine-2) achieves durable tumor control with less systemic adverse effects in cancer immunotherapy. Biomaterials, 2022, 280, 121257.	11.4	16
2	Synthesis of gold nano-mushrooms <i>via</i> solvent-controlled galvanic replacement to enhance phototherapeutic efficiency. Nanoscale, 2022, 14, 1409-1420.	5.6	6
3	Precursor Heterogeneity Driven Mo–Te Nanoparticle Structural Diversification for Cancer Photo-Theranostics. ACS Applied Materials & Interfaces, 2022, 14, 9987-10000.	8.0	O
4	Rationally designed nanoparticle delivery of Cas9 ribonucleoprotein for effective gene editing. Journal of Controlled Release, 2022, 345, 108-119.	9.9	9
5	Wavelength Independent Photoâ€Chemo Triâ€Modal Combinatorial Renal Cell Carcinoma Therapy with Biocompatible Goldâ€Titania Nanostars. Advanced Therapeutics, 2022, 5, 2100204.	3.2	0
6	Osmium–Tellurium Nanozymes for Pentamodal Combinatorial Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44124-44135.	8.0	20
7	Modus Operandi of Simultaneous Covering Synthesis from Precursor Heterogeneity for Shelled Nanorods for Multipotent Cancer Theranostics. Advanced Functional Materials, 2020, 30, 1907203.	14.9	7
8	Intrinsic Peroxidase-Mimicking Ir Nanoplates for Nanozymatic Anticancer and Antibacterial Treatment. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41062-41070.	8.0	41
9	Discovery of direct-acting antiviral agents with a graphene-based fluorescent nanosensor. Science Advances, 2020, 6, eaaz8201.	10.3	16
10	Nonrecurring Circuit Nanozymatic Enhancement of Hypoxic Pancreatic Cancer Phototherapy Using Speckled Ru–Te Hollow Nanorods. ACS Nano, 2020, 14, 4383-4394.	14.6	48
11	RNAi nanotherapy for fibrosis: highly durable knockdown of CTGF/CCN-2 using siRNA-DegradaBALL (LEM-S401) to treat skin fibrotic diseases. Nanoscale, 2020, 12, 6385-6393.	5.6	19
12	Environmentally Friendly Synthesis of Au–Te-Clustered Nanoworms via Galvanic Replacement for Wavelength-Selective Combination Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5511-5519.	8.0	7
13	Fucoidan-coated coral-like Pt nanoparticles for computed tomography-guided highly enhanced synergistic anticancer effect against drug-resistant breast cancer cells. Nanoscale, 2019, 11, 15173-15183.	5. 6	36
14	Direct Monitoring of Cancer-Associated mRNAs in Living Cells to Evaluate the Therapeutic RNAi Efficiency Using Fluorescent Nanosensor. ACS Sensors, 2019, 4, 1174-1179.	7.8	6
15	Hydrothermal Galvanic-Replacement-Tethered Synthesis of Ir–Ag–IrO ₂ Nanoplates for Computed Tomography-Guided Multiwavelength Potent Thermodynamic Cancer Therapy. ACS Nano, 2019, 13, 3434-3447.	14.6	34
16	Development of Dualâ€Pore Coexisting Branched Silica Nanoparticles for Efficient Gene–Chemo Cancer Therapy. Small, 2018, 14, 1702564.	10.0	20
17	Revisiting of Pd Nanoparticles in Cancer Treatment: All-Round Excellence of Porous Pd Nanoplates in Gene-Thermo Combinational Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13819-13828.	8.0	53
18	Synthesis of porous Pd nanoparticles by therapeutic chaga extract for highly efficient tri-modal cancer treatment. Nanoscale, 2018, 10, 19810-19817.	5.6	38

SEOUNGHUN KANG

#	Article	IF	CITATIONS
19	Synthesis of biologically-active reduced graphene oxide by using fucoidan as a multifunctional agent for combination cancer therapy. Nanotechnology, 2018, 29, 475604.	2.6	16
20	Morphology-Controlled Synthesis of Rhodium Nanoparticles for Cancer Phototherapy. ACS Nano, 2018, 12, 6997-7008.	14.6	48
21	Reducing Agent-Assisted Excessive Galvanic Replacement Mediated Seed-Mediated Synthesis of Porous Gold Nanoplates and Highly Efficient Gene-Thermo Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35268-35278.	8.0	31