Muhammad I Qadir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1039825/publications.pdf

Version: 2024-02-01

26 papers

619 citations

687363 13 h-index 25 g-index

28 all docs

28 docs citations

times ranked

28

885 citing authors

#	Article	IF	CITATIONS
1	Selective CO ₂ Hydrogenation to Formic Acid with Multifunctional Ionic Liquids. ACS Catalysis, 2018, 8, 1628-1634.	11.2	132
2	Selective Carbon Dioxide Hydrogenation Driven by Ferromagnetic RuFe Nanoparticles in Ionic Liquids. ACS Catalysis, 2018, 8, 1621-1627.	11.2	77
3	Use of an optofluidic microreactor and Cu nanoparticles synthesized in ionic liquid and embedded in TiO2 for an efficient photoreduction of CO2 to methanol. Chemical Engineering Journal, 2021, 404, 126643.	12.7	72
4	Synthesis and Urease Inhibition Studies of Barbituric and Thiobarbituric Acid Derived Sulphonamides. Journal of the Chinese Chemical Society, 2011, 58, 528-537.	1.4	46
5	Synergistic CO2 hydrogenation over bimetallic Ru/Ni nanoparticles in ionic liquids. Applied Catalysis B: Environmental, 2019, 252, 10-17.	20.2	45
6	Synthesis of new bergenin derivatives as potent inhibitors of inflammatory mediators NO and TNF- $\hat{l}\pm$. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2744-2747.	2.2	32
7	Core–Shell Fe–Pt Nanoparticles in Ionic Liquids: Magnetic and Catalytic Properties. Journal of Physical Chemistry C, 2018, 122, 4641-4650.	3.1	27
8	Inhibitory Effect of Macabarterin, a Polyoxygenated Ellagitannin from <i>Macaranga barteri</i> , on Human Neutrophil Respiratory Burst Activity. Journal of Natural Products, 2008, 71, 1906-1910.	3.0	24
9	TiO2 nanomaterials: Highly active catalysts for the oxidation of hydrocarbons. Journal of Molecular Catalysis A, 2014, 383-384, 225-230.	4.8	21
10	lonic liquid effect: selective aniline oxidative coupling to azoxybenzene by TiO ₂ . Catalysis Science and Technology, 2015, 5, 1459-1462.	4.1	21
11	Fast CO2 hydrogenation to formic acid catalyzed by an Ir(PSiP) pincer hydride in a DMSO/water/ionic liquid solvent system. Catalysis Communications, 2020, 146, 106125.	3.3	18
12	Photocatalytic Reverse Semiâ€Combustion Driven by Ionic Liquids. ChemSusChem, 2019, 12, 1011-1016.	6.8	17
13	Conferols A and B, New Anti-inflammatory 4-Hydroxyisoflavones from Caragana conferta. Chemical and Pharmaceutical Bulletin, 2009, 57, 415-417.	1.3	16
14	Fabrication of naked silver nanoparticles in functionalized ionic liquids. Nano Structures Nano Objects, 2018, 14, 92-97.	3.5	13
15	Barlerisides A and B, new potent superoxide scavenging phenolic glycosides from <i>Barleria acanthoides</i> Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 1332-1335.	5.2	8
16	Reverse Semiâ€Combustion Driven by Titanium Dioxide″onic Liquid Hybrid Photocatalyst. ChemSusChem, 2020, 13, 5580-5585.	6.8	8
17	Functionalized Ionic Liquids Sputter Decorated with Pd Nanoparticles. Australian Journal of Chemistry, 2019, 72, 49.	0.9	7
18	Catalytic Semiâ€Water–Gas Shift Reaction: A Simple Green Path to Formic Acid Fuel. ChemSusChem, 2020, 13, 1817-1824.	6.8	7

#	Article	IF	Citations
19	Phenolic substances of Caragana conferta and their superoxide scavenging activity. Chemistry of Natural Compounds, 2010, 46, 722-725.	0.8	6
20	Photoreforming driven by indium hydroxide/oxide nano-objects. International Journal of Hydrogen Energy, 2019, 44, 25695-25705.	7.1	5
21	Bioactive Chemical Constituents of Stereospermum kunthianum (Bignoniaceae). Research Journal of Phytochemistry, 2009, 3, 35-43.	0.1	5
22	Transition metal-catalyzed hydrogenation of carbon dioxide in ionic liquids. Advances in Organometallic Chemistry, 2019, , 259-274.	1.0	4
23	Nanoparticle-Catalysts for Hydrogen Storage Based on Small Molecules. Recyclable Catalysis, 2016, 2, .	0.1	3
24	Hydrogenation of CO2 on Nanostructured Cu/FeOx Catalysts: The Effect of Morphology and Cu Load on Selectivity. Catalysts, 2022, 12, 516.	3.5	3
25	Effect of Support Nature on Ruthenium-Catalyzed Allylic Oxidation of Cycloalkenes. Catalysis Letters, 2022, 152, 3058-3065.	2.6	1
26	MNP Catalysis in Ionic Liquids. Molecular Catalysis, 2020, , 107-128.	1.3	O