
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1039799/publications.pdf Version: 2024-02-01

HAVDEE F D RAZAN

#	Article	IF	CITATIONS
1	Docosanoid signaling modulates corneal nerve regeneration: effect on tear secretion, wound healing, and neuropathic pain. Journal of Lipid Research, 2021, 62, 100033.	4.2	25
2	Neuroanatomy and neurochemistry of rat cornea: Changes with age. Ocular Surface, 2021, 20, 86-94.	4.4	12
3	ELV-N32 and RvD6 isomer decrease pro-inflammatory cytokines, senescence programming, ACE2 and SARS-CoV-2-spike protein RBD binding in injured cornea. Scientific Reports, 2021, 11, 12787.	3.3	11
4	Elucidating the structure and functions of Resolvin D6 isomers on nerve regeneration with a distinctive trigeminal transcriptome. FASEB Journal, 2021, 35, e21775.	0.5	9
5	Novel RvD6 stereoisomer induces corneal nerve regeneration and wound healing post-injury by modulating trigeminal transcriptomic signature. Scientific Reports, 2020, 10, 4582.	3.3	28
6	Mapping the entire nerve architecture of the cat cornea. Veterinary Ophthalmology, 2019, 22, 345-352.	1.0	12
7	Remodeling of Substance P Sensory Nerves and Transient Receptor Potential Melastatin 8 (TRPM8) Cold Receptors After Corneal Experimental Surgery. , 2019, 60, 2449.		25
8	Mouse strains and sexual divergence in corneal innervation and nerve regeneration. FASEB Journal, 2019, 33, 4598-4609.	0.5	22
9	Changes in Corneal Innervation after HSV-1 Latency Established with Different Reactivation Phenotypes. Current Eye Research, 2017, 42, 181-186.	1.5	16
10	Recovery of Corneal Sensitivity and Increase in Nerve Density and Wound Healing in Diabetic Mice After PEDF Plus DHA Treatment. Diabetes, 2017, 66, 2511-2520.	0.6	53
11	Defining a mechanistic link between pigment epithelium–derived factor, docosahexaenoic acid, and corneal nerve regeneration. Journal of Biological Chemistry, 2017, 292, 18486-18499.	3.4	50
12	PEDF plus DHA modulate inflammation and stimulate nerve regeneration after HSV-1 infection. Experimental Eye Research, 2017, 161, 153-162.	2.6	33
13	Neuroanatomy and Neurochemistry of Mouse Cornea. , 2016, 57, 664.		83
14	The PEDF Neuroprotective Domain Plus DHA Induces Corneal Nerve Regeneration After Experimental Surgery. , 2015, 56, 3505.		45
15	Morphology and neurochemistry of rabbit iris innervation. Experimental Eye Research, 2015, 135, 182-191.	2.6	4
16	Differential effects of hepatocyte growth factor and keratinocyte growth factor on corneal epithelial cell cycle protein expression, cell survival, and growth. Molecular Vision, 2014, 20, 24-37.	1.1	14
17	Neuroprotectin D1 Restores Corneal Nerve Integrity and Function After Damage From Experimental Surgery. , 2013, 54, 4109.		65
18	Corneal Nerve Architecture in a Donor with Unilateral Epithelial Basement Membrane Dystrophy. Ophthalmic Research, 2013, 49, 185-191.	1.9	16

#	Article	IF	CITATIONS
19	Recovery of Corneal Sensitivity, Calcitonin Gene-Related Peptide–Positive Nerves, and Increased Wound Healing Induced by Pigment Epithelial–Derived Factor Plus Docosahexaenoic Acid After Experimental Surgery. JAMA Ophthalmology, 2012, 130, 76.	2.4	63
20	Lipoxin A4 inhibits platelet-activating factor inflammatory response and stimulates corneal wound healing of injuries that compromise the stroma. Experimental Eye Research, 2012, 103, 9-16.	2.6	20
21	Mapping the Nerve Architecture of Diabetic Human Corneas. Ophthalmology, 2012, 119, 956-964.	5.2	65
22	Aspirin-Triggered Lipoxin A4 (15-epi-LXA4) Increases the Endothelial Viability of Human Corneas Storage in Optisol-GS. Journal of Ocular Pharmacology and Therapeutics, 2011, 27, 235-241.	1.4	18
23	Docosahexaenoic acid, protectins and dry eye. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 132-137.	2.5	46
24	EGF Stimulates Lipoxin A4 Synthesis and Modulates Repair in Corneal Epithelial Cells through ERK and p38 Activation. , 2011, 52, 2240.		41
25	Role of Platelet-Activating Factor in Cell Death Signaling in the Cornea: A Review. Molecular Neurobiology, 2010, 42, 32-38.	4.0	11
26	Neuroprotectin D1 Synthesis and Corneal Nerve Regeneration after Experimental Surgery and Treatment with PEDF plus DHA. , 2010, 51, 804.		84
27	The Induction of an Angiogenic Response in Corneal Myofibroblasts by Platelet-Activating Factor (PAF). Current Eye Research, 2010, 35, 1063-1071.	1.5	11
28	Resolvin E1 Improves Tear Production and Decreases Inflammation in a Dry Eye Mouse Model. Journal of Ocular Pharmacology and Therapeutics, 2010, 26, 431-439.	1.4	111
29	Mapping the entire human corneal nerve architecture. Experimental Eye Research, 2010, 91, 513-523.	2.6	145
30	Significance of lipid mediators in corneal injury and repair. Journal of Lipid Research, 2010, 51, 879-891.	4.2	62
31	A Novel Platelet Activating Factor Receptor Antagonist Reduces Cell Infiltration and Expression of Inflammatory Mediators in Mice Exposed to Desiccating Conditions after PRK. Clinical and Developmental Immunology, 2009, 2009, 1-7.	3.3	8
32	Epidermal Growth Factor Synergism with TGF- \hat{l}^21 via PI-3 Kinase Activity in Corneal Keratocyte Differentiation. , 2008, 49, 2936.		61
33	Association of Protein Tyrosine Phosphatases (PTPs)-1B with c-Met Receptor and Modulation of Corneal Epithelial Wound Healing. , 2008, 49, 2927.		37
34	Platelet-Activating Factor Overturns the Transcriptional Repressor Disposition of Sp1 in the Expression of MMP-9in Human Corneal Epithelial Cells. , 2007, 48, 1931.		32
35	Protein kinase C alpha and epsilon differentially modulate hepatocyte growth factor-induced epithelial proliferation and migration. Experimental Eye Research, 2007, 85, 289-297.	2.6	29
36	Alkali-Induced Corneal Stromal Melting Prevention by a Novel Platelet-Activating Factor Receptor Antagonist. JAMA Ophthalmology, 2006, 124, 70.	2.4	41

#	Article	IF	CITATIONS
37	Synergistic Effect of Platelet-Activating Factor and Tumor Necrosis Factor-α on Corneal Myofibroblast Apoptosis. , 2006, 47, 883.		29
38	Epidermal and Hepatocyte Growth Factors, but Not Keratinocyte Growth Factor, Modulate Protein Kinase Cα Translocation to the Plasma Membrane through 15(S)-Hydroxyeicosatetraenoic Acid Synthesis. Journal of Biological Chemistry, 2005, 280, 7917-7924.	3.4	42
39	Topical Combination of NGF and DHA Increases Rabbit Corneal Nerve Regeneration after Photorefractive Keratectomy. , 2005, 46, 3121.		89
40	PAF-Induced Furin and MT1-MMP Expression Is Independent of MMP-2 Activation in Corneal Myofibroblasts. , 2005, 46, 487.		21
41	Cellular and molecular events in corneal wound healing: significance of lipid signalling. Experimental Eye Research, 2005, 80, 453-463.	2.6	63
42	HGF Protects Corneal Epithelial Cells from Apoptosis by the PI-3K/Akt-1/Bad- but Not the ERK1/2-Mediated Signaling Pathway. , 2004, 45, 3485.		65
43	Platelet-Activating Factor (PAF) Induces Corneal Neovascularization and Upregulates VEGF Expression in Endothelial Cells. , 2004, 45, 2915.		52
44	Plateletâ€activating factor (PAF) induces activation of matrix metalloproteinase 2 activity and vascular endothelial cell invasion and migration. FASEB Journal, 2004, 18, 568-570.	0.5	48
45	Prevention of experimental diffuse lamellar keratitis using a novel platelet-activating factor receptor antagonist. Journal of Cataract and Refractive Surgery, 2004, 30, 884-891.	1.5	21
46	Growth factor-induced proliferation in corneal epithelial cells is mediated by 12(S)-HETE. Experimental Eye Research, 2003, 76, 613-622.	2.6	28
47	p38 and ERK1/2 Coordinate Cellular Migration and Proliferation in Epithelial Wound Healing. Journal of Biological Chemistry, 2003, 278, 21989-21997.	3.4	298
48	Platelet-activating Factor Induces the Gene Expression of TIMP-1, -2, and PAI-1: Imbalance Between the Gene Expression of MMP-9 and TIMP-1 and -2. Experimental Eye Research, 2002, 74, 393-402.	2.6	43
49	The role of platelet-activating factor in the corneal response to injury. Progress in Retinal and Eye Research, 2002, 21, 449-464.	15.5	40
50	Delay of corneal epithelial wound healing and induction of keratocyte apoptosis by platelet-activating factor. Investigative Ophthalmology and Visual Science, 2002, 43, 1422-8.	3.3	26
51	Increased synthesis of specific eicosanoids in rejected corneal grafts. Current Eye Research, 1996, 15, 1208-1212.	1.5	6
52	Platelet-activating factor preferentially stimulates the phospholipase A ₂ /cyclooxygenase cascade in the rabbit cornea. Current Eye Research, 1995, 14, 769-775.	1.5	21
53	Differences in the acyl composition of the platelet-activating factor (PAF) precursor and other choline phosphoglycerides of the rabbit retinal rod outer segments and neural retina. Current Eye Research, 1994, 13, 45-50.	1.5	8
54	The platelet-activating factor precursor of the injured cornea is selectively implicated in arachidonate and eicosanoid release. Current Eye Research, 1993, 12, 655-663.	1.5	12

#	Article	IF	CITATIONS
55	Production of platelet-activating factor in photocoagulated retinas. Current Eye Research, 1991, 10, 1031-1035.	1.5	17
56	Inflammation-induced stimulation of the synthesis of prostaglandins and lipoxygenase-reaction products in rabbit cornea. Current Eye Research, 1985, 4, 175-179.	1.5	69
57	Metabolism of phosphoinositides and inositol polyphosphates in rabbit corneal epithelium. Current Eye Research, 1985, 4, 793-801.	1.5	17
58	Composition of phospholipids and free fatty acids and incorporation of labeled arachidonic acid in rabbit cornea. Comparison of epithelium, stroma and endothelium. Current Eye Research, 1984, 3, 1313-1320.	1.5	28