
Takako Ishiga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10396978/publications.pdf Version: 2024-02-01

TAKAKO ISHICA

#	Article	IF	CITATIONS
1	Pseudomonas cannabina pv. alisalensis Virulence Factors Are Involved in Resistance to Plant-Derived Antimicrobials during Infection. Plants, 2022, 11, 1742.	3.5	3
2	Acibenzolar-S-methyl and probenazole activate stomatal-based defense at different times to control bacterial blight of cabbage. Journal of General Plant Pathology, 2021, 87, 30-34.	1.0	12
3	Pseudmonas cannabina pv. alisalensis TrpA Is Required for Virulence in Multiple Host Plants. Frontiers in Microbiology, 2021, 12, 659734.	3.5	5
4	Acibenzolar-S-methyl efficacy against bacterial brown stripe caused by Acidovorax avenae subsp. avenae in creeping bentgrass. Journal of General Plant Pathology, 2021, 87, 387-393.	1.0	5
5	Coronatine Contributes to <i>Pseudomonas cannabina</i> pv. <i>alisalensis</i> Virulence by Overcoming Both Stomatal and Apoplastic Defenses in Dicot and Monocot Plants. Molecular Plant-Microbe Interactions, 2021, 34, 746-757.	2.6	17
6	Multiple virulence factors regulated by AlgU contribute to the pathogenicity of <i>Pseudomonas savastanoi</i> pv. <i>glycinea</i> in soybean. PeerJ, 2021, 9, e12405.	2.0	4
7	Acibenzolar-S-methyl activates stomatal-based defense against Pseudomonas cannabina pv. alisalensis in cabbage. Journal of General Plant Pathology, 2020, 86, 48-54.	1.0	19
8	Acibenzolar-S-Methyl Activates Stomatal-Based Defense Systemically in Japanese Radish. Frontiers in Plant Science, 2020, 11, 565745.	3.6	7
9	Flood inoculation of seedlings on culture medium to study interactions between Pseudomonas syringae pv. actinidiae and kiwifruit. Journal of General Plant Pathology, 2020, 86, 257-265.	1.0	6
10	Transposon mutagenesis reveals <i>Pseudomonas cannabina</i> pv. <i>alisalensis</i> optimizes its virulence factors for pathogenicity on different hosts. PeerJ, 2019, 7, e7698.	2.0	16
11	AlgU contributes to the virulence of Pseudomonas syringae pv. tomato DC3000 by regulating production of the phytotoxin coronatine. Journal of General Plant Pathology, 2018, 84, 189-201.	1.0	25
12	The SAL-PAP Chloroplast Retrograde Pathway Contributes to Plant Immunity by Regulating Glucosinolate Pathway and Phytohormone Signaling. Molecular Plant-Microbe Interactions, 2017, 30, 829-841.	2.6	50
13	Pseudomonas syringae Flood-inoculation Method in Arabidopsis. Bio-protocol, 2017, 7, e2106.	0.4	14
14	NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against <i>Pseudomonas syringae</i> pathogens by regulating chloroplast-generated reactive oxygen species. PeerJ, 2016, 4, e1938.	2.0	27
15	Jasmonate ZIM-Domain (JAZ) Protein Regulates Host and Nonhost Pathogen-Induced Cell Death in Tomato and Nicotiana benthamiana. PLoS ONE, 2013, 8, e75728.	2.5	56
16	NTRC and Chloroplast-Generated Reactive Oxygen Species Regulate <i>Pseudomonas syringae</i> pv. <i>tomato</i> Disease Development in Tomato and <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2012, 25, 294-306.	2.6	45
17	<i>SGT1</i> contributes to coronatine signaling and <i>Pseudomonas syringae</i> pv. <i>tomato</i> disease symptom development in tomato and Arabidopsis. New Phytologist, 2011, 189, 83-93.	7.3	32
18	Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions. Plant Methods, 2011, 7, 32.	4.3	145

ΤΑΚΑΚΟ ISHIGA

#	Article	IF	CITATIONS
19	Involvement of SGT1 in COR-mediated signal transduction pathway leading to disease symptom development. Plant Signaling and Behavior, 2011, 6, 1072-1073.	2.4	4
20	Exogenous coronatine, but not coronafacic acid or methyl jasmonate, restores the disease phenotype of a coronatine-defective mutant of Pseudomonas syringae pv. tomato on tomato seedlings. Journal of General Plant Pathology, 2010, 76, 188-195.	1.0	6
21	Involvement of coronatine-inducible reactive oxygen species in bacterial speck disease of tomato. Plant Signaling and Behavior, 2009, 4, 237-239.	2.4	18
22	The phytotoxin coronatine induces lightâ€dependent reactive oxygen species in tomato seedlings. New Phytologist, 2009, 181, 147-160.	7.3	66
23	Pathogenicity of <i>Pseudomonas syringae</i> pv. <i>tomato</i> on Tomato Seedlings: Phenotypic and Gene Expression Analyses of the Virulence Function of Coronatine. Molecular Plant-Microbe Interactions, 2008, 21, 383-395.	2.6	79