MarÃ-a C Gutiérrez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10396854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chemical Society Reviews, 2013, 42, 794-830.	38.1	1,065
2	Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials, 2008, 29, 94-102.	11.4	402
3	Ice-Templated Materials: Sophisticated Structures Exhibiting Enhanced Functionalities Obtained after Unidirectional Freezing and Ice-Segregation-Induced Self-Assembly. Chemistry of Materials, 2008, 20, 634-648.	6.7	396
4	Freeze-Drying of Aqueous Solutions of Deep Eutectic Solvents: A Suitable Approach to Deep Eutectic Suspensions of Self-Assembled Structures. Langmuir, 2009, 25, 5509-5515.	3.5	380
5	Deep Eutectic Solvents in Polymerizations: A Greener Alternative to Conventional Syntheses. ChemSusChem, 2014, 7, 999-1009.	6.8	200
6	Deep eutectic solvents as both precursors and structure directing agents in the synthesis of nitrogen doped hierarchical carbons highly suitable for CO2 capture. Energy and Environmental Science, 2011, 4, 3535.	30.8	176
7	Bacteria Incorporation in Deepâ€eutectic Solvents through Freezeâ€Drying. Angewandte Chemie - International Edition, 2010, 49, 2158-2162.	13.8	158
8	Phosphorus-doped carbon–carbon nanotube hierarchical monoliths as true three-dimensional electrodes in supercapacitor cells. Journal of Materials Chemistry A, 2016, 4, 1251-1263.	10.3	136
9	Macroporous 3D Architectures of Self-Assembled MWCNT Surface Decorated with Pt Nanoparticles as Anodes for a Direct Methanol Fuel Cell. Journal of Physical Chemistry C, 2007, 111, 5557-5560.	3.1	132
10	Frontal polymerizations carried out in deep-eutectic mixtures providing both the monomers and the polymerization medium. Chemical Communications, 2011, 47, 5328.	4.1	127
11	Resorcinol-Formaldehyde Polycondensation in Deep Eutectic Solvents for the Preparation of Carbons and Carbonâ°'Carbon Nanotube Composites. Chemistry of Materials, 2010, 22, 2711-2719.	6.7	126
12	Block-Copolymer assisted synthesis of hierarchical carbon monoliths suitable as supercapacitor electrodes. Journal of Materials Chemistry, 2010, 20, 773-780.	6.7	114
13	Three-dimensional microchanelled electrodes in flow-through configuration for bioanode formation and current generation. Energy and Environmental Science, 2011, 4, 4201.	30.8	112
14	Synthesis of novel lidocaine-releasing poly(diol-co-citrate) elastomers by using deep eutectic solvents. Chemical Communications, 2012, 48, 579-581.	4.1	98
15	Synthesis of macroporous poly(acrylic acid)–carbon nanotube composites by frontal polymerization in deep-eutectic solvents. Journal of Materials Chemistry A, 2013, 1, 3970.	10.3	97
16	Deep eutectic solvents as both active fillers and monomers for frontal polymerization. Journal of Polymer Science Part A, 2013, 51, 1767-1773.	2.3	92
17	Phosphateâ€Functionalized Carbon Monoliths from Deep Eutectic Solvents and their Use as Monolithic Electrodes in Supercapacitors. ChemSusChem, 2012, 5, 1405-1409.	6.8	87
18	Deepâ€Eutecticâ€Solventâ€Assisted Synthesis of Hierarchical Carbon Electrodes Exhibiting Capacitance Retention at High Current Densities. Chemistry - A European Journal, 2011, 17, 10533-10537.	3.3	86

MarÃa C Gutiérrez

#	Article	IF	CITATIONS
19	PPO15-PEO22-PPO15 block copolymer assisted synthesis of monolithic macro- and microporous carbon aerogels exhibiting high conductivity and remarkable capacitance. Journal of Materials Chemistry, 2009, 19, 1236.	6.7	82
20	Preparative scale Baeyer–Villiger biooxidation at high concentration using recombinant Escherichia coli and in situ substrate feeding and product removal process. Nature Protocols, 2008, 3, 546-554.	12.0	78
21	Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications. Progress in Polymer Science, 2014, 39, 1448-1471.	24.7	78
22	Biocompatible MWCNT scaffolds for immobilization and proliferation of E. coli. Journal of Materials Chemistry, 2007, 17, 2992-2995.	6.7	74
23	Deep Eutectic Solvent-Assisted Synthesis of Biodegradable Polyesters with Antibacterial Properties. Langmuir, 2013, 29, 9525-9534.	3.5	74
24	Deep eutectic assisted synthesis of carbon adsorbents highly suitable for low-pressure separation of CO2–CH4 gas mixtures. Energy and Environmental Science, 2012, 5, 8699.	30.8	71
25	Microwave-assisted synthesis of NiCo2O4–graphene oxide nanocomposites suitable as electrodes for supercapacitors. RSC Advances, 2013, 3, 13690.	3.6	69
26	Chitosan Gelation Induced by the in Situ Formation of Gold Nanoparticles and Its Processing into Macroporous Scaffolds. Biomacromolecules, 2011, 12, 179-186.	5.4	61
27	Progress in Bionanocomposite and Bioinspired Foams. Advanced Materials, 2011, 23, 5262-5267.	21.0	58
28	Hydrogel Scaffolds with Immobilized Bacteria for 3D Cultures. Chemistry of Materials, 2007, 19, 1968-1973.	6.7	56
29	Microbiological Transformations 57. Facile and Efficient Resin-Based in Situ SFPR Preparative-Scale Synthesis of an Enantiopure "Unexpected―Lactone Regioisomer via a Baeyerâ^'Villiger Oxidation Process. Organic Letters, 2004, 6, 1955-1958.	4.6	55
30	Preparation of Chitosan Nanocompositeswith a Macroporous Structure by Unidirectional Freezing and Subsequent Freeze-Drying. Marine Drugs, 2014, 12, 5619-5642.	4.6	55
31	Chondroitin sulphate-based 3D scaffolds containing MWCNTs for nervous tissue repair. Biomaterials, 2014, 35, 1543-1551.	11.4	55
32	Synthesis of Biodegradable Macroporous Poly(<scp>l</scp> -lactide)/Poly(ε-caprolactone) Blend Using Oil-in-Eutectic-Mixture High-Internal-Phase Emulsions as Template. ACS Applied Materials & Interfaces, 2016, 8, 16939-16949.	8.0	55
33	Enzymatic Synthesis of Amorphous Calcium Phosphateâ~'Chitosan Nanocomposites and Their Processing into Hierarchical Structures. Chemistry of Materials, 2008, 20, 11-13.	6.7	49
34	Osteoconductive Performance of Carbon Nanotube Scaffolds Homogeneously Mineralized by Flowâ€Through Electrodeposition. Advanced Functional Materials, 2012, 22, 4411-4420.	14.9	46
35	In Situ Precipitation of Amorphous Calcium Phosphate and Ciprofloxacin Crystals during the Formation of Chitosan Hydrogels and Its Application for Drug Delivery Purposes. Langmuir, 2012, 28, 15937-15946.	3.5	37
36	Efficient nitrogen-doping and structural control of hierarchical carbons using unconventional precursors in the form of deep eutectic solvents. Journal of Materials Chemistry A, 2014, 2, 17387-17399.	10.3	37

MarÃa C Gutiérrez

#	Article	IF	CITATIONS
37	Urea assisted hydroxyapatite mineralization on MWCNT/CHI scaffolds. Journal of Materials Chemistry, 2008, 18, 5933.	6.7	35
38	Nitrogen-doped carbons prepared from eutectic mixtures as metal-free oxygen reduction catalysts. Journal of Materials Chemistry A, 2016, 4, 478-488.	10.3	35
39	Phase Behavior of Elastin-Like Synthetic Recombinamers in Deep Eutectic Solvents. Biomacromolecules, 2012, 13, 2029-2036.	5.4	30
40	Chitosan Scaffolds Containing Calcium Phosphate Salts and rhBMP-2: In Vitro and In Vivo Testing for Bone Tissue Regeneration. PLoS ONE, 2014, 9, e87149.	2.5	28
41	Near-to-eutectic mixtures as bifunctional catalysts in the low-temperature-ring-opening-polymerization of ε-caprolactone. Green Chemistry, 2015, 17, 3632-3643.	9.0	27
42	Highly Efficient and Recyclable Carbonâ€Nanofiberâ€Based Aerogels for Ionic Liquid–Water Separation and Ionic Liquid Dehydration in Flowâ€Through Conditions. Advanced Materials, 2019, 31, e1903418.	21.0	24
43	Brillouin Spectroscopy as a Suitable Technique for the Determination of the Eutectic Composition in Mixtures of Choline Chloride and Water. Journal of Physical Chemistry B, 2020, 124, 4002-4009.	2.6	24
44	Enzyme-induced graft polymerization for preparation of hydrogels: synergetic effect of laccase-immobilized-cryogels for pollutants adsorption. Soft Matter, 2010, 6, 3533.	2.7	21
45	Effect of doping in carbon nanotubes on the viability of biomimetic chitosanâ€carbon nanotubesâ€hydroxyapatite scaffolds. Journal of Biomedical Materials Research - Part A, 2014, 102, 3341-3351.	4.0	20
46	Deepâ€Eutecticâ€Assisted Synthesis of Bimodal Porous Carbon Monoliths with High Electrical Conductivities. Particle and Particle Systems Characterization, 2013, 30, 316-320.	2.3	19
47	Sulfurâ€Ðoped Carbons Prepared from Eutectic Mixtures Containing Hydroxymethylthiophene as Metalâ€Free Oxygen Reduction Catalysts. ChemSusChem, 2014, 7, 3347-3355.	6.8	17
48	Carbon–GO Composites with Preferential Water versus Ethanol Uptake. ACS Applied Materials & Interfaces, 2019, 11, 24493-24503.	8.0	12
49	Tools for extending the dilution range of the "solvent-in-DES―regime. Journal of Molecular Liquids, 2021, 329, 115573.	4.9	11
50	Should deep eutectic solvents be treated as a mixture of two components or as a pseudo-component?. Journal of Chemical Physics, 2021, 154, 184501.	3.0	10
51	Vortex ring processes allowing shape control and entrapment of antibacterial agents in GO-based particles. Carbon, 2019, 147, 408-418.	10.3	7
52	lce as a Green-Structure-Directing Agent in the Synthesis of Macroporous MWCNTs and Chondroitin Sulphate Composites. Materials, 2017, 10, 355.	2.9	5
53	Deep Eutectic Solvents Playing Multiple Roles in the Synthesis of Porous Carbon Materials. , 2015, , 23-45.		1