
Jeremy D Dang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10396355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bis(tri- <i>n</i> -hexylsilyl oxide) Silicon Phthalocyanine: A Unique Additive in Ternary Bulk Heterojunction Organic Photovoltaic Devices. ACS Applied Materials & Interfaces, 2014, 6, 15040-15051.	8.0	71
2	The mixed alloyed chemical composition of chloro-(chloro) _n -boron subnaphthalocyanines dictates their physical properties and performance in organic photovoltaic devices. Journal of Materials Chemistry A, 2016, 4, 9566-9577.	10.3	31
3	Evaluating Thiophene Electronâ€Donor Layers for the Rapid Assessment of Boron Subphthalocyanines as Electron Acceptors in Organic Photovoltaics: Solution or Vacuum Deposition?. ChemPhysChem, 2015, 16, 1245-1250.	2.1	29

A Boron Subphthalocyanine Polymer: Poly(4-methylstyrene)-<i>co</i>-oly(phenoxy boron) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 To 4.8 rd 19

5	The influence of strong and weak hydrogen bonds on the solid state arrangement of hydroxy-containing boron subphthalocyanines. CrystEngComm, 2013, 15, 8578.	2.6	17
6	Process for the synthesis of symmetric and unsymmetric oxygen bridged dimers of boron subphthalocyanines (μ-oxo-(BsubPc) ₂ s). Dalton Transactions, 2015, 44, 4280-4288.	3.3	14
7	Characterization of μ-oxo-(BsubPc) ₂ in Multiple Organic Photovoltaic Device Architectures: Comparing against and Combining with Cl-BsubPc. ACS Applied Materials & Interfaces, 2016, 8, 24712-24721.	8.0	14
8	Phenoxy-(Chloro) _{<i>n</i>} -Boron Subnaphthalocyanines: Alloyed Mixture, Electron-Accepting Functionality, and Enhanced Solubility for Bulk Heterojunction Organic Photovoltaics. ACS Omega, 2018, 3, 2093-2103.	3.5	14
9	Considerations for the physical vapor deposition of high molar mass organic compounds. Vacuum, 2014, 109, 26-33.	3.5	10
10	The Mixed Alloyed Chemical Composition of Chloro-(chloro) _{<i>n</i>} -Boron Subnaphthalocyanines Dictates Their Performance as Electron-Donating and Hole-Transporting Materials in Organic Photovoltaics. ACS Applied Energy Materials, 2018, 1, 1029-1036.	5.1	8