Hiroyuki Ohashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10396288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Safety of 222 nm UVC Irradiation to the Surgical Site in a Rabbit Model. Photochemistry and Photobiology, 2022, 98, 1365-1371.	2.5	8
2	Effect of ultraviolet C emitted from KrCl excimer lamp with or without bandpass filter to mouse epidermis. PLoS ONE, 2022, 17, e0267957.	2.5	7
3	Evaluation of Acute Reactions on Mouse Skin Irradiated with 222 and 235 nm UV . Photochemistry and Photobiology, 2021, 97, 770-777.	2.5	18
4	Reâ€Evaluation of Rat Corneal Damage by Shortâ€Wavelength UV Revealed Extremely Less Hazardous Property of Farâ€UVâ€C ^{â€} . Photochemistry and Photobiology, 2021, 97, 505-516.	2.5	31
5	Exploratory clinical trial on the safety and bactericidal effect of 222-nm ultraviolet C irradiation in healthy humans. PLoS ONE, 2020, 15, e0235948.	2.5	85
6	Longâ€ŧerm Effects of 222â€nm ultraviolet radiation C SterilizingÂLamps on Mice Susceptible to Ultraviolet Radiation. Photochemistry and Photobiology, 2020, 96, 853-862.	2.5	113
7	Ultraviolet C light with wavelength of 222 nm inactivates a wide spectrum of microbial pathogens. Journal of Hospital Infection, 2020, 105, 459-467.	2.9	114
8	Antigen-responsive fluorescent antibody probes generated by selective N-terminal modification of IgGs. Chemical Communications, 2018, 54, 12734-12737.	4.1	13
9	Cell-Free Technologies for Proteomics and Protein Engineering. Protein and Peptide Letters, 2016, 23, 819-827.	0.9	2
10	One-pot construction of Quenchbodies using antibody-binding proteins. Analytical Methods, 2016, 8, 7774-7779.	2.7	11
11	Insight into the Working Mechanism of Quenchbody: Transition of the Dye around Antibody Variable Region That Fluoresces upon Antigen Binding. Bioconjugate Chemistry, 2016, 27, 2248-2253.	3.6	34
12	Development of a novel immunoassay for herbal cannabis using a new fluorescent antibody probe, "Ultra Quenchbody― Forensic Science International, 2016, 266, 541-548.	2.2	12
13	Catalytic subunits of the phosphatase calcineurin interact with NF-κB-inducing kinase (NIK) and attenuate NIK-dependent gene expression. Scientific Reports, 2015, 5, 10758.	3.3	13
14	Next-Generation Technologies for Multiomics Approaches Including Interactome Sequencing. BioMed Research International, 2015, 2015, 1-9.	1.9	33
15	Optimal fusion of antibody binding domains resulted in higher affinity and wider specificity. Journal of Bioscience and Bioengineering, 2015, 120, 504-509.	2.2	14
16	Development of a rapid method for the quantitative determination of deoxynivalenol using Quenchbody. Analytica Chimica Acta, 2015, 888, 126-130.	5.4	28
17	Mitochondria–Nucleus Shuttling FK506-Binding Protein 51 Interacts with TRAF Proteins and Facilitates the RIG-I-Like Receptor-Mediated Expression of Type I IFN. PLoS ONE, 2014, 9, e95992.	2.5	31
18	Towards Personalized Medicine Mediated by in Vitro Virus-Based Interactome Approaches. International Journal of Molecular Sciences, 2014, 15, 6717-6724.	4.1	8

HIROYUKI OHASHI

#	Article	IF	CITATIONS
19	Ultra Q-bodies: quench-based antibody probes that utilize dye-dye interactions with enhanced antigen-dependent fluorescence. Scientific Reports, 2014, 4, 4640.	3.3	70
20	Analysis of Transcription Factor Networks Using IVV Method. Methods in Molecular Biology, 2014, 1164, 15-22.	0.9	1
21	Detection of vimentin serine phosphorylation by multicolor Quenchbodies. Biosensors and Bioelectronics, 2013, 40, 17-23.	10.1	37
22	Efficiency of puromycin-based technologies mediated by release factors and a ribosome recycling factor. Protein Engineering, Design and Selection, 2013, 26, 533-537.	2.1	2
23	Peptide Screening Using PURE Ribosome Display. Methods in Molecular Biology, 2012, 805, 251-259.	0.9	13
24	Next-generation sequencing coupled with a cell-free display technology for high-throughput production of reliable interactome data. Scientific Reports, 2012, 2, 691.	3.3	25
25	"Quenchbodies― Quench-Based Antibody Probes That Show Antigen-Dependent Fluorescence. Journal of the American Chemical Society, 2011, 133, 17386-17394.	13.7	129
26	A Highly Controllable Reconstituted Cell-Free System -a Breakthrough in Protein Synthesis Research. Current Pharmaceutical Biotechnology, 2010, 11, 267-271.	1.6	52
27	Ribosome Display with the PURE Technology. Methods in Molecular Biology, 2010, 607, 219-225.	0.9	14
28	Efficient protein selection based on ribosome display system with purified components. Biochemical and Biophysical Research Communications, 2007, 352, 270-276.	2.1	115