
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1039513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbonate fabric diversity and environmental heterogeneity in the late Mesoproterozoic Era. Geological Magazine, 2022, 159, 220-246.	1.5	5
2	Molar-Tooth Structure as a Window into the Deposition and Diagenesis of Precambrian Carbonate. Annual Review of Earth and Planetary Sciences, 2022, 50, 205-230.	11.0	7
3	Perseverance's Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation. Space Science Reviews, 2021, 217, 1.	8.1	94
4	Diagenesis Revealed by Fine‣cale Features at Vera Rubin Ridge, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2019JE006311.	3.6	7
5	Structural and chemical heterogeneity of Proterozoic organic microfossils of the ca. 1 Ga old Angmaat Formation, Baffin Island, Canada. Geobiology, 2021, 19, 557-584.	2.4	1
6	Stratigraphic Relationships in Jezero Crater, Mars: Constraints on the Timing of Fluvial‣acustrine Activity From Orbital Observations. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006840.	3.6	20
7	A persistently low level of atmospheric oxygen in Earth's middle age. Nature Communications, 2021, 12, 351.	12.8	48
8	Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science, 2021, 374, 711-717.	12.6	86
9	Constraints on Meso- to Neoproterozoic seawater from ancient evaporite deposits. Earth and Planetary Science Letters, 2020, 532, 115951.	4.4	23
10	Predicting the Mechanical and Fracture Properties of Mars Analog Sedimentary Lithologies. Earth and Space Science, 2020, 7, e2019EA000926.	2.6	2
11	Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team. Space Science Reviews, 2020, 216, 1.	8.1	67
12	Is a Linear or a Walkabout Protocol More Efficient When Using a Rover to Choose Biologically Relevant Samples in a Small Region of Interest?. Astrobiology, 2020, 20, 327-348.	3.0	5
13	Mineralized microbialites as archives of environmental evolution, Laguna Negra, Catamarca Province, Argentina. Geobiology, 2019, 17, 199-222.	2.4	15
14	Extensive Polygonal Fracture Network in Siccar Point group Strata: Fracture Mechanisms and Implications for Fluid Circulation in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2019, 124, 2613-2634.	3.6	16
15	An interval of high salinity in ancient Gale crater lake on Mars. Nature Geoscience, 2019, 12, 889-895.	12.9	105
16	Mineralâ€Filled Fractures as Indicators of Multigenerational Fluid Flow in the Pahrump Hills Member of the Murray Formation, Gale Crater, Mars. Earth and Space Science, 2019, 6, 238-265.	2.6	66
17	The Taphonomy of Proterozoic Microbial Mats and Implications for Early Diagenetic Silicification. Geosciences (Switzerland), 2019, 9, 40.	2.2	20
18	Uranium isotope evidence for limited euxinia in mid-Proterozoic oceans. Earth and Planetary Science Letters, 2019, 521, 150-157.	4.4	61

#	Article	IF	CITATIONS
19	Distribution of primary and secondary features in the Pahrump Hills outcrop (Gale crater, Mars) as seen in a Mars Descent Imager (MARDI) "sidewalk―mosaic. Icarus, 2019, 328, 194-209.	2.5	19
20	Late-stage diagenetic concretions in the Murray formation, Gale crater, Mars. Icarus, 2019, 321, 866-890.	2.5	50
21	Evidence for plunging river plume deposits in the Pahrump Hills member of the Murray formation, Gale crater, Mars. Sedimentology, 2019, 66, 1768-1802.	3.1	80
22	Testing the efficiency of rover science protocols for robotic sample selection: A GeoHeuristic Operational Strategies Test. Acta Astronautica, 2018, 146, 300-315.	3.2	3
23	Proterozoic carbonates of the Vindhyan Basin, India: Chemostratigraphy and diagenesis. Gondwana Research, 2018, 57, 10-25.	6.0	33
24	Shaler: <i>inÂsitu</i> analysis of a fluvial sedimentary deposit on Mars. Sedimentology, 2018, 65, 96-122.	3.1	59
25	Paired isotope records of carbonate and organic matter from the Middle Ordovician of Argentina: Intrabasinal variation and effects of the marine chemocline. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490, 107-130.	2.3	24
26	Syndepositional precipitation of calcium sulfate in Gale Crater, Mars. Terra Nova, 2018, 30, 431-439.	2.1	35
27	Mercury isotope signatures record photic zone euxinia in the Mesoproterozoic ocean. Proceedings of the United States of America, 2018, 115, 10594-10599.	7.1	56
28	Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth and Planetary Science Letters, 2017, 463, 159-170.	4.4	172
29	Proterozoic microbial mats and their constraints on environments of silicification. Geobiology, 2017, 15, 469-483.	2.4	34
30	The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions. Earth and Space Science, 2017, 4, 506-539.	2.6	117
31	Curiosity Rover Mars Hand Lens Imager (MAHLI) Views of the Sediments and Sedimentary Rocks of Gale Crater, Mars. Microscopy and Microanalysis, 2017, 23, 2142-2143.	0.4	1
32	Reevaluating the age of the Walden Creek Group and the kinematic evolution of the western Blue Ridge, southern Appalachians. Numerische Mathematik, 2016, 316, 279-308.	1.4	5
33	Behavior of marine sulfur in the Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 458, 133-153.	2.3	58
34	Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars. Journal of Geophysical Research E: Planets, 2015, 120, 452-482.	3.6	51
35	Deepâ€water microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth, lithification, and implications for coniform stromatolites. Geobiology, 2015, 13, 15-32.	2.4	32
36	Sulfur isotope composition of carbonate-associated sulfate from the Mesoproterozoic Jixian Group, North China: Implications for the marine sulfur cycle. Precambrian Research, 2015, 266, 319-336.	2.7	33

#	Article	IF	CITATIONS
37	Heterogeneous redox conditions and a shallow chemocline in the Mesoproterozoic ocean: Evidence from carbon–sulfur–iron relationships. Precambrian Research, 2015, 257, 94-108.	2.7	68
38	Images from Curiosity: A New Look at Mars. Elements, 2015, 11, 27-32.	0.5	13
39	Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science, 2015, 350, aac7575.	12.6	471
40	To what extent can intracrater layered deposits that lack clear sedimentary textures be used to infer depositional environments?. Icarus, 2015, 248, 526-538.	2.5	12
41	Gale crater and impact processes – Curiosity's first 364 Sols on Mars. Icarus, 2015, 249, 108-128.	2.5	37
42	MICROBIALITES IN A HIGH-ALTITUDE ANDEAN LAKE: MULTIPLE CONTROLS ON CARBONATE PRECIPITATION AND LAMINA ACCRETION. Palaios, 2014, 29, 233-249.	1.3	50
43	Progressive deformation of feldspar recording lowâ€barometry impact processes, Tenoumer impact structure, Mauritania. Meteoritics and Planetary Science, 2014, 49, 1007-1022.	1.6	21
44	Carbonate platform development in a Paleoproterozoic extensional basin, Vempalle Formation, Cuddapah Basin, India. Journal of Asian Earth Sciences, 2014, 91, 263-279.	2.3	27
45	Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1245267.	12.6	323
46	A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.	12.6	687
47	In Situ Radiometric and Exposure Age Dating of the Martian Surface. Science, 2014, 343, 1247166.	12.6	224
48	Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.	12.6	246
49	Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 1991-2016.	3.6	214
50	Diagenetic origin of nodules in the Sheepbed member, Yellowknife Bay formation, Gale crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 1637-1664.	3.6	80
51	Subaqueous shrinkage cracks in the Sheepbed mudstone: Implications for early fluid diagenesis, Gale crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 1597-1613.	3.6	50
52	Chemistry and texture of the rocks at Rocknest, Gale Crater: Evidence for sedimentary origin and diagenetic alteration. Journal of Geophysical Research E: Planets, 2014, 119, 2109-2131.	3.6	48
53	Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.	12.6	280
54	Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science, 2013, 341, 263-266.	12.6	327

#	Article	IF	CITATIONS
55	Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.	12.6	367
56	Oceanic molybdenum drawdown by epeiric sea expansion in the Mesoproterozoic. Chemical Geology, 2013, 356, 21-37.	3.3	50
57	Carbon isotope records in a Mesoproterozoic epicratonic sea: Carbon cycling in a low-oxygen world. Precambrian Research, 2013, 228, 85-101.	2.7	72
58	lsotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group, North China: Implications for biological and oceanic evolution. Precambrian Research, 2013, 224, 169-183.	2.7	80
59	Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.	12.6	326
60	The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.	12.6	134
61	Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.	12.6	215
62	COVARIANCE OF MICROFOSSIL ASSEMBLAGES AND MICROBIALITE TEXTURES ACROSS AN UPPER MESOPROTEROZOIC CARBONATE PLATFORM. Palaios, 2013, 28, 453-470.	1.3	79
63	MAHLI at the Rocknest sand shadow: Science and scienceâ€enabling activities. Journal of Geophysical Research E: Planets, 2013, 118, 2338-2360.	3.6	67
64	Characteristics of pebble―and cobbleâ€sized clasts along the Curiosity rover traverse from Bradbury Landing to Rocknest. Journal of Geophysical Research E: Planets, 2013, 118, 2361-2380.	3.6	44
65	Curiosity's Mars Hand Lens Imager (MAHLI) Investigation. Space Science Reviews, 2012, 170, 259-317.	8.1	185
66	Sulfur isotope evidence for widespread euxinia and a fluctuating oxycline in Early to Middle Ordovician greenhouse oceans. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 313-314, 189-214.	2.3	94
67	Bentonite geochronology, marine geochemistry, and the Great Ordovician Biodiversification Event (GOBE). Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 321-322, 88-101.	2.3	37
68	Biomarkers of black shales formed by microbial mats, Late Mesoproterozoic (1.1Ga) Taoudeni Basin, Mauritania. Precambrian Research, 2012, 196-197, 113-127.	2.7	113
69	Chemostratigraphy of the Late Mesoproterozoic Atar Group, Taoudeni Basin, Mauritania: Muted isotopic variability, facies correlation, and global isotopic trends. Precambrian Research, 2012, 200-203, 82-103.	2.7	92
70	Protracted oxygenation of the Proterozoic biosphere. International Geology Review, 2011, 53, 1424-1442.	2.1	58
71	Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology, 2007, 35, 799.	4.4	129

Carbon isotope chemostratigraphy of the Middle Riphean type section (Avzyan Formation, Southern) Tj ETQq0 0 0 337 /Overlock 10 Tf 72

#	Article	IF	CITATIONS
73	C-and Sr-isotope chemostratigraphy as a tool for verifying age of Riphean deposits in the Kama-Belaya aulacogen, the east European platform. Stratigraphy and Geological Correlation, 2007, 15, 12-29.	0.8	15
74	Reconstructing sea-level change from the internal architecture of stromatolite reefs: an example from the Mesoproterozoic Sulky Formation, Dismal Lakes Group, arctic Canada. Canadian Journal of Earth Sciences, 2006, 43, 653-669.	1.3	37
75	Morphology of Molar-Tooth Structures in Precambrian Carbonates: Influence of Substrate Rheology and Implications for Genesis. Journal of Sedimentary Research, 2006, 76, 310-323.	1.6	57
76	Proterozoic sedimentary exhalative (SEDEX) deposits and links to evolving global ocean chemistry. , 2006, , .		26
77	Active Microbial Sulfur Disproportionation in the Mesoproterozoic. Science, 2005, 310, 1477-1479.	12.6	215
78	Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature, 2004, 431, 834-838.	27.8	413
79	Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology, 2004, 32, 129.	4.4	197
80	Changes in organic matter production and accumulation as a mechanism for isotopic evolution in the Mesoproterozoic ocean. Geological Magazine, 2003, 140, 397-420.	1.5	60
81	Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine evolution. Precambrian Research, 2001, 111, 203-234.	2.7	190
82	Title is missing!. , 2000, , 345-360.		8
83	δ ¹³ C stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: implications for regional lithostratigraphic correlations. Canadian Journal of Earth Sciences, 1999, 36, 313-332.	1.3	183
84	Microbenthic distribution of Proterozoic tidal flats: Environmental and taphonomic considerations. Geology, 1996, 24, 79.	4.4	104