
Thomas Naselaris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10392953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NeuroGen: Activation optimized image synthesis for discovery neuroscience. NeuroImage, 2022, 247, 118812.	2.1	10
2	A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nature Neuroscience, 2022, 25, 116-126.	7.1	129
3	Extensive sampling for complete models of individual brains. Current Opinion in Behavioral Sciences, 2021, 40, 45-51.	2.0	86
4	Color-selective brain responses and hue representations from ultra-high-field fMRI of natural scenes. Journal of Vision, 2021, 21, 2009.	0.1	0
5	Voxel-to-voxel predictive models reveal unexpected structure in unexplained variance. NeuroImage, 2021, 238, 118266.	2.1	7
6	Evidence for a ventral visual stream in the pulvinar. Journal of Vision, 2021, 21, 2809.	0.1	3
7	Spectral Encoding of Seen and Attended Object Categories in the Human Brain. Journal of Neuroscience, 2020, 40, 327-342.	1.7	2
8	Working with high-dimensional feature spaces. , 2020, , 267-282.		0
9	Generative Feedback Explains Distinct Brain Activity Codes for Seen and Mental Images. Current Biology, 2020, 30, 2211-2224.e6.	1.8	56
10	The Natural Scenes Dataset (NSD): A yearlong ultra-high field whole-brain human fMRI visual perception and memory study. Journal of Vision, 2020, 20, 589.	0.1	2
11	Precise identification of semantic representations in the human brain. Journal of Vision, 2020, 20, 539.	0.1	2
12	Tracking the Development of Functional Connectomes for Face Processing. Brain Connectivity, 2019, 9, 231-239.	0.8	1
13	Cognition as inference: a unifying account of some neural effects associated with mental imagery and attention. , 2019, , .		1
14	Using deep neural network features to predict voxelwise activity in ultra-high field fMRI. , 2019, , .		0
15	Evidence for Visual Representation of Numerosity in Natural Scenes. , 2019, , .		0
16	Cognitive Computational Neuroscience: A New Conference for an Emerging Discipline. Trends in Cognitive Sciences, 2018, 22, 365-367.	4.0	22
17	The feature-weighted receptive field: an interpretable encoding model for complex feature spaces. NeuroImage, 2018, 180, 188-202.	2.1	58
18	Generative Adversarial Networks Conditioned on Brain Activity Reconstruct Seen Images. , 2018, , .		27

THOMAS NASELARIS

#	Article	IF	CITATIONS
19	A variational image reconstruction algorithm reveals distortion and uncertainty in mental imagery. , 2018, , .		Ο
20	Voxel to voxel encoding models reveal unexpected structure in unexplained variance. , 2018, , .		1
21	Activity associated with speech articulation measured through direct cortical recordings. Brain and Language, 2017, 169, 1-7.	0.8	5
22	Building a better model of V1. Journal of Vision, 2017, 17, 780.	0.1	2
23	Resolving Ambiguities of MVPA Using Explicit Models of Representation. Trends in Cognitive Sciences, 2015, 19, 551-554.	4.0	101
24	Mental Imagery: Functional Mechanisms and Clinical Applications. Trends in Cognitive Sciences, 2015, 19, 590-602.	4.0	631
25	A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes. NeuroImage, 2015, 105, 215-228.	2.1	252
26	Natural Scene Statistics Account for the Representation of Scene Categories in Human Visual Cortex. Neuron, 2013, 79, 1025-1034.	3.8	123
27	Cortical representation of animate and inanimate objects in complex natural scenes. Journal of Physiology (Paris), 2012, 106, 239-249.	2.1	60
28	Encoding and decoding in fMRI. NeuroImage, 2011, 56, 400-410.	2.1	693
29	Encoding and decoding V1 fMRI responses to natural images with sparse nonparametric models. Annals of Applied Statistics, 2011, 5, 1159-1182.	0.5	27
30	Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies. Current Biology, 2011, 21, 1641-1646.	1.8	722
31	Bayesian Reconstruction of Perceptual Experiences from Human Brain Activity. Lecture Notes in Computer Science, 2009, , 390-393.	1.0	Ο
32	Bayesian Reconstruction of Natural Images from Human Brain Activity. Neuron, 2009, 63, 902-915.	3.8	430
33	Identifying natural images from human brain activity. Nature, 2008, 452, 352-355.	13.7	1,071
34	Dynamic Sculpting of Directional Tuning in the Primate Motor Cortex during Three-Dimensional Reaching. Journal of Neuroscience, 2008, 28, 9164-9172.	1.7	72
35	Mapping of the preferred direction in the motor cortex. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11068-11072.	3.3	84
36	Reply to Kurtzer and Herter. Journal of Neurophysiology, 2007, 97, 4391-4392.	0.9	9

#	Article	IF	CITATIONS
37	Large-Scale Organization of Preferred Directions in the Motor Cortex. II. Analysis of Local Distributions. Journal of Neurophysiology, 2006, 96, 3237-3247.	0.9	33
38	Large-Scale Organization of Preferred Directions in the Motor Cortex. I. Motor Cortical Hyperacuity for Forward Reaching. Journal of Neurophysiology, 2006, 96, 3231-3236.	0.9	42
39	Spatial Reconstruction of Trajectories of an Array of Recording Microelectrodes. Journal of Neurophysiology, 2005, 93, 2318-2330.	0.9	26