Catherine Debiemme-Chouvy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1039229/publications.pdf

Version: 2024-02-01

105 papers 2,136 citations

201658
27
h-index

276858 41 g-index

108 all docs

108 docs citations

108 times ranked

2541 citing authors

#	Article	IF	Citations
1	One-pot electrosynthesis of ultrathin overoxidized poly(3,4-ethylenedioxythiophene) films. Electrochimica Acta, 2022, 401, 139472.	5.2	11
2	Optimization and Antibacterial Response of N-Halamine Coatings Based on Polydopamine. Colloids and Interfaces, 2022, 6, 9.	2.1	4
3	Interface evolution and performance degradation in LiCoO2 composite battery electrodes monitoredÂby advanced EQCM. Electrochimica Acta, 2022, 413, 140171.	5. 2	1
4	Anisotropic thermal conductivity and enhanced hardness of copper matrix composite reinforced with carbonized polydopamine. Composites Communications, 2022, 33, 101210.	6.3	5
5	Copper electrodeposition under a weak magnetic field: effect on the texturing and properties of the deposits. Journal of Applied Electrochemistry, 2021, 51, 235-243.	2.9	8
6	Poly(<i>ortho</i> -phenylenediamine) overlaid fibrous carbon networks exhibiting a synergistic effect for enhanced performance in hybrid micro energy storage devices. Journal of Materials Chemistry A, 2021, 9, 10487-10496.	10.3	5
7	Laser vibrational excitation of radicals to prevent crystallinity degradation caused by boron doping in diamond. Science Advances, 2021, 7, .	10.3	6
8	Preventing Graphene from Restacking <i>via</i> Bioinspired Chemical Inserts: Toward a Superior 2D Micro-supercapacitor Electrode. ACS Applied Nano Materials, 2021, 4, 4964-4973.	5 . 0	10
9	High Performance 2D Micro-Supercapacitor Electrode Composed of Graphene with Polydopamine As Inserts. ECS Meeting Abstracts, 2021, MA2021-02, 536-536.	0.0	1
10	Templateless Electrosynthesis of Nanostructured PEDOT Films. ECS Meeting Abstracts, 2021, MA2021-02, 707-707.	0.0	0
11	Tuning Redox State and Ionic Transfers of Mg/Fe-Layered Double Hydroxide Nanosheets by Electrochemical and Electrogravimetric Methods. Nanomaterials, 2020, 10, 1832.	4.1	6
12	A New Antibacterial <i>N</i> -Halamine Coating Based on Polydopamine. Langmuir, 2020, 36, 11005-11014.	3 . 5	23
13	Insights into Redox Reactions and Ionic Transfers in Nickel/Iron Layered Double Hydroxide in Potassium Hydroxide. Journal of Physical Chemistry C, 2020, 124, 3037-3049.	3.1	9
14	Charge Storage Properties of Nanostructured Poly (3,4–ethylenedioxythiophene) Electrodes Revealed by Advanced Electrogravimetry. Nanomaterials, 2019, 9, 962.	4.1	4
15	Nanocomposite coatings based on graphene and siloxane polymers deposited by atmospheric pressure plasma. Application to corrosion protection of steel. Surface and Coatings Technology, 2019, 377, 124928.	4.8	28
16	Understanding the energy storage mechanisms of poly(3,4-ethylenedioxythiophene)-coated silicon nanowires by electrochemical quartz crystal microbalance. Materials Letters, 2019, 240, 59-61.	2.6	13
17	Tuning Charge Storage Properties of Supercapacitive Electrodes Evidenced by In Situ Gravimetric and Viscoelastic Explorations. Analytical Chemistry, 2019, 91, 2885-2893.	6. 5	16
18	Electrosynthesis of polypyrrole nano/micro structures using an electrogenerated oriented polypyrrole nanowire array as framework. Electrochimica Acta, 2018, 268, 66-72.	5 . 2	44

#	Article	IF	CITATIONS
19	Properties of Tin Films Electrodeposited under a Weak Magnetic Field. Surface Engineering and Applied Electrochemistry, 2018, 54, 593-598.	0.8	1
20	Electrochemical (pre)treatments to prevent biofouling. Current Opinion in Electrochemistry, 2018, 11, 48-54.	4.8	18
21	Facile and Green Reduction of Graphene Oxide by a Reduced Polyoxometalate and Formation of a Nanohybrid. ChemPlusChem, 2017, 82, 186-189.	2.8	2
22	<i>N</i> â€halamine coatings formed via the electroreduction of ⟨i⟩in situ⟨/i⟩ generated diazonium cations: toward antimicrobial surfaces. Surface and Interface Analysis, 2016, 48, 630-635.	1.8	3
23	Comparative Study of Basal-Plane Pyrolytic Graphite, Boron-Doped Diamond, and Amorphous Carbon Nitride Electrodes for the Voltammetric Determination of Furosemide in Pharmaceutical and Urine Samples. Electrochimica Acta, 2016, 197, 179-185.	5.2	31
24	Ion intercalation dynamics of electrosynthesized mesoporous WO ₃ thin films studied by multi-scale coupled electrogravimetric methods. Physical Chemistry Chemical Physics, 2015, 17, 14773-14787.	2.8	19
25	Mechanism of formation of templateless electrogenerated polypyrrole nanostructures. Electrochimica Acta, 2015, 179, 297-303.	5.2	48
26	New Insights into Pseudocapacitive Charge-Storage Mechanisms in Li-Birnessite Type MnO ₂ Monitored by Fast Quartz Crystal Microbalance Methods. Journal of Physical Chemistry C, 2014, 118, 26551-26559.	3.1	49
27	Determination of surface amine groups on amorphous carbon nitride thin films using a one step covalent grafting of a redox probe. Electrochimica Acta, 2014, 136, 473-482.	5.2	3
28	Electrodeposition of Polypyrrole in TiO ₂ Nanotube Arrays by Pulsed-Light and Pulsed-Potential Methods. Journal of Physical Chemistry C, 2014, 118, 26341-26350.	3.1	14
29	Templateless electrogeneration of polypyrrole nanostructures: impact of the anionic composition and pH of the monomer solution. Journal of Materials Chemistry A, 2014, 2, 9859.	10.3	43
30	Determination of the Diffusion Coefficient of Protons in Nafion Thin Films by <i>ac</i> -Electrogravimetry. Langmuir, 2013, 29, 13655-13660.	3.5	30
31	Amorphous carbon nitride as an alternative electrode material in electroanalysis: Simultaneous determination of dopamine and ascorbic acid. Analytica Chimica Acta, 2013, 797, 30-39.	5.4	45
32	Convective mass transport in ionic liquids studied by electrochemical and electrohydrodynamic impedance spectroscopy. Electrochimica Acta, 2013, 93, 32-43.	5.2	9
33	Antimicrobial <i>N</i> -Halamine Polymers and Coatings: A Review of Their Synthesis, Characterization, and Applications. Biomacromolecules, 2013, 14, 585-601.	5.4	233
34	Double Layer at [BuMelm][Tf ₂ N] Ionic Liquidâ€"Pt or â^'C Material Interfaces. Journal of Physical Chemistry C, 2013, 117, 22915-22925.	3.1	43
35	Electrochemical Characterisations of Ultra Thin Overoxidized Polypyrrole Films Obtained by One-Step Electrosynthesis. Journal of the Electrochemical Society, 2013, 160, D465-D470.	2.9	8
36	Redox Switching of Heteropolyanions Entrapped in Polypyrrole Films Investigated by ac Electrogravimetry. Langmuir, 2012, 28, 13746-13757.	3.5	11

#	Article	IF	CITATIONS
37	Photocurrent Generation in Carbon Nitride and Carbon Nitride/Conjugated Polymer Composites. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4579-4587.	8.0	25
38	Electrosynthesis and Characterisation of Antimicrobial Modified Protein Nanoaggregates. , 2012, , 291-309.		0
39	Electropolymerized Polypyrrole Nanowires for Hydrogen Gas Sensing. Journal of Physical Chemistry C, 2012, 116, 13388-13394.	3.1	77
40	Simultaneous detection of ascorbic acid and dopamine with electrochemically pretreated carbon nitride electrodes: Comparison with boron-doped diamond electrodes. Electrochemistry Communications, 2012, 24, 61-64.	4.7	31
41	Influence of electrochemical pre-treatment on highly reactive carbon nitride thin films deposited on stainless steel for electrochemical applications. Electrochimica Acta, 2012, 75, 131-138.	5.2	15
42	Electrochemical treatments using tin oxide anode to prevent biofouling. Electrochimica Acta, 2011, 56, 10364-10370.	5.2	37
43	Comparative AFM nanoscratching tests in air of bulk copper and electrogenerated cuprous oxide films. Surface Science, 2011, 605, 121-130.	1.9	6
44	Proton transport properties in hybrid membranes investigated by ac-electrogravimetry. Electrochemistry Communications, 2010, 12, 1136-1139.	4.7	19
45	Evidence by EIS of the interaction between proteins and tin oxide electrode surface. Electrochimica Acta, 2010, 55, 6233-6238.	5.2	6
46	Insight into the electroreduction of nitrate ions at a copper electrode, in neutral solution, after determination of their diffusion coefficient by electrochemical impedance spectroscopy. Electrochimica Acta, 2010, 55, 7341-7345.	5.2	34
47	A very thin overoxidized polypyrrole membrane as coating for fast time response and selective H2O2 amperometric sensor. Biosensors and Bioelectronics, 2010, 25, 2454-2457.	10.1	33
48	Characterization of a very thin overoxidized polypyrrole membrane: application to H ₂ O ₂ determination. Surface and Interface Analysis, 2010, 42, 1144-1147.	1.8	8
49	Advantage of Ultra Thin Overoxidized Polypyrrole Membrane in the Design of Amperometric Biosensor. ECS Transactions, 2010, 33, 21-24.	0.5	4
50	Proton Insertion Properties in a Hybrid Membrane/Conducting Polymer Bilayer Investigated by AC Electrogravimetry. Journal of the Electrochemical Society, 2010, 157, F69.	2.9	11
51	Functionalized Hybrid Organic-Inorganic Membranes Investigated by ac-Electrogravimetry. ECS Transactions, 2009, 25, 1115-1123.	0.5	0
52	EIS study of photo-induced modifications of nano-columnar TiO2 films. Electrochimica Acta, 2009, 54, 1228-1232.	5.2	88
53	Template-free one-step electrochemical formation of polypyrrole nanowire array. Electrochemistry Communications, 2009, 11, 298-301.	4.7	106
54	ac-Electrogravimetry study of ionic and solvent motion in polypyrrole films doped with an heteropolyanion, SiMo12O404â°'. Electrochimica Acta, 2008, 53, 3836-3843.	5.2	15

#	Article	IF	CITATIONS
55	Relationship between the structure and the optical and electrical properties of reactively sputtered carbon nitride films. Solid State Communications, 2008, 145, 392-396.	1.9	31
56	An insight into the overoxidation of polypyrrole materials. Electrochemistry Communications, 2008, 10, 947-950.	4.7	85
57	Thin films of amorphous nitrogenated carbon a-CNx: Electron transfer and surface reactivity. Electrochimica Acta, 2008, 53, 5752-5759.	5.2	26
58	Evidence by Electrochemical Impedance Spectroscopy of Surface States Mediated SiMo ₁₂ O ₄₀ ^{4â^'} Reduction at an n-InP Electrode. Journal of Physical Chemistry C, 2008, 112, 18183-18188.	3.1	8
59	One-Step Electrochemical Synthesis of a Very Thin Overoxidized Polypyrrole Film. Electrochemical and Solid-State Letters, 2007, 10, E24.	2.2	33
60	An Original Route to Immobilize an Organic Biocide onto a Transparent Tin Dioxide Electrode. Langmuir, 2007, 23, 3873-3879.	3.5	14
61	Electrocatalytic Reduction of HNO2 by a Silicomolybdate Polyanion: A Differential Electrochemical Mass Spectrometry Study. Electroanalysis, 2007, 19, 259-262.	2.9	8
62	Study by XPS of the chlorination of proteins aggregated onto tin dioxide during electrochemical production of hypochlorous acid. Applied Surface Science, 2007, 253, 5506-5510.	6.1	38
63	Correlation between electrochemical reactivity and surface chemistry of amorphous carbon nitride films. Surface and Interface Analysis, 2006, 38, 719-722.	1.8	25
64	XPS and RBS characterizations of electrosynthesized polypyrrole films doped with a heteropolyanion, SiMo12O404â ⁻² . Surface and Interface Analysis, 2006, 38, 531-534.	1.8	5
65	Investigation by EQCM of the electrosynthesis and the properties of polypyrrole films doped with sulphate ions and/or a Keggin-type heteropolyanion, SiMo12O404â^'. Electrochimica Acta, 2006, 51, 3622-3631.	5. 2	24
66	First evidence of the antibacterial property of SnO2 surface electrochemically modified in the presence of bovine serum albumin and chloride ions. Electrochemistry Communications, 2006, 8, 1115-1118.	4.7	10
67	Microstructure and electronic investigations of carbon nitride films deposited by RF magnetron sputtering. Thin Solid Films, 2005, 482, 41-44.	1.8	20
68	Improvement and characterization of the electrochemical reactivity of amorphous carbon nitride electrodes. Electrochemistry Communications, 2005, 7, 496-499.	4.7	29
69	Anodic photodissolution of n-InP, under electroless conditions. Electrochimica Acta, 2004, 49, 3129-3136.	5.2	5
70	First Evidence of the Oxidation and Regeneration of Polysulfides at a GaAs Electrode, under Anodic Conditions. A Study by in Situ UVâ^'Visible Spectroelectrochemistry. Journal of Physical Chemistry B, 2004, 108, 18291-18296.	2.6	27
71	Functionalizing Surfaces with Nickel Ions for the Grafting of Proteins. Langmuir, 2003, 19, 4138-4143.	3.5	36
72	Nanocomposite systems based on gold nanoparticles and thiometalates. From colloids to networks. Journal of Materials Chemistry, 2003, 13, 338.	6.7	25

#	Article	IF	CITATIONS
73	A Reduced Polyoxomolybdenum Borophosphate Anion Related to the Wellsâ^'Dawson Clusters. Journal of the American Chemical Society, 2002, 124, 908-909.	13.7	50
74	Selective electroless photoetching of n-type InP in acidic solution containing an heteropolyanion (SiMo12O404â^'). Electrochemistry Communications, 2002, 4, 97-101.	4.7	2
75	Use of XPS to follow the evolution of a solution/solid interface: SiMo12O404? acidic solution/GaAs interface. Surface and Interface Analysis, 2002, 34, 628-631.	1.8	O
76	Study of the reactions taking place at the â€~GaAs electrode/SiMo12O4O4â^' solution' interface. Electrochimica Acta, 2002, 47, 1615-1621.	5.2	6
77	A New Application for Heteropolyanions: Etching of III-V Semiconductor Compounds. Journal of Cluster Science, 2002, 13, 313-331.	3.3	3
78	Influence of Co(II) ions on the electrochemical behavior of n- and p-type GaAs electrodes in boric acid solution. Electrochimica Acta, 2002, 47, 2533-2541.	5.2	0
79	Behavior ofp-Type GaAs in an Aerated Boric Acid Solution at the Open-Circuit Potential. Influence of the Presence of Co(II) Ions. Journal of Physical Chemistry B, 2001, 105, 4840-4845.	2.6	5
80	Surface films on HgCdTe and CdTe etched in ferricyanide solution. Applied Surface Science, 2001, 175-176, 579-584.	6.1	5
81	X-ray photoemission investigation of the corrosion film formed on a polished Cu–13Sn alloy in aerated NaCl solution. Applied Surface Science, 2001, 174, 55-61.	6.1	50
82	Reactivity of heteropolyanions toward GaAs compound. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2441.	2.1	3
83	Oxygen electroreduction catalysis: effect of sulfur addition on cobalt tetraazaannulene precursors. Electrochimica Acta, 1999, 45, 721-729.	5.2	22
84	Local oxide growth on the n-GaAs surface studied by small area XPS. Surface Science, 1999, 433-435, 131-135.	1.9	18
85	Porosity and Tellurium-Enrichment of Anodized p-Cd[sub 0.95]Zn[sub 0.05]Te. Electrochemical and Solid-State Letters, 1999, 2, 619.	2.2	10
86	Contribution to the understanding of the CdTe and Cd1 â^' yZnyTe surface chemistry. Journal of Crystal Growth, 1998, 184-185, 213-217.	1.5	20
87	Oxidation of Hg0.8Cd0.2Te in basic media: an XPS and spectroscopic ellipsometry study. Journal of Crystal Growth, 1998, 184-185, 1237-1241.	1.5	2
88	Study of the interaction at rest potential between silicotungstic heteropolyanion solution and GaAs surface. Applied Surface Science, 1998, 135, 65-70.	6.1	7
89	Enrichment in tellurium during photodissolution on n-CdTe in sulfuric acid solution. Electrochimica Acta, 1997, 42, 211-221.	5.2	4
90	Detection of cadmium oxides on a CdTe substrate by X-AES. Surface Science, 1996, 352-354, 495-498.	1.9	12

#	Article	IF	CITATIONS
91	Electrochemical characterization of GaSb in the presence of cerium species. Electrochimica Acta, 1995, 40, 189-196.	5.2	2
92	Reactivity of III–V and II–VI semiconductors toward hydrogen: surface modification and evolution in air. Applied Surface Science, 1995, 84, 187-192.	6.1	15
93	Surface Evolution of n-Type CdTe in Acidic Medium in the Presence of Ce4+ lons. The Journal of Physical Chemistry, 1995, 99, 15198-15207.	2.9	8
94	\$f Ce^{4+}\$: a New Etching Agent for Cadmium Telluride. Japanese Journal of Applied Physics, 1995, 34, L1344-L1347.	1.5	4
95	Supersaturated Zincate Solutions: A Structural Study. Journal of the Electrochemical Society, 1995, 142, 1359-1364.	2.9	15
96	Electrochemical Behavior of nâ€Type CdTe in the Presence of a Monoelectronic Oxidizing Agent (Ce4+). Journal of the Electrochemical Society, 1994, 141, 2409-2413.	2.9	6
97	Improvement of dark current of Ga(A1)Sb mesa diodes using (NH4)2S treatment. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 28, 374-378.	3.5	12
98	Electrochemical techniques for the elucidation of the interface structure of the n-lnP/aqueous electrolyte junction. Journal of Electroanalytical Chemistry, 1994, 365, 283-287.	3.8	13
99	Mise en évidence des mécanismes d'injection de porteurs majoritaires à l'interface semiconducteur/électrolyte. Journal De Physique III, 1994, 4, 273-291.	0.3	7
100	Modification of GaAs surface stoichiometry and reactivity induced by a hydrogen plasma. Applied Surface Science, 1993, 65-66, 643-646.	6.1	4
101	Xâ€ray photoelectron spectroscopy study of GaAs surface exposed to a rf hydrogen plasma. Applied Physics Letters, 1993, 62, 2254-2255.	3.3	15
102	XPS studies of oxide layers on InP after oxidation in the presence of Ce4+. Surface and Interface Analysis, 1992, 19, 393-396.	1.8	5
103	Weakening of the hole injection effect proceeding from the reduction of ceric species after oxidation of indium phosphide compounds. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 312, 301-307.	0.1	2
104	Supersaturated Zincate Solutions: A Study of the Decomposition Kinetics. Journal of the Electrochemical Society, 1991, 138, 2538-2542.	2.9	35
105	Dissolution Rate of Ill–V Compound Oxides Influence of Cerium Species. Journal of the Electrochemical Society, 1991, 138, L65-L66.	2.9	5