

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1039134/publications.pdf Version: 2024-02-01

|          |                | 57758        | 62596          |
|----------|----------------|--------------|----------------|
| 119      | 7,166          | 44           | 80             |
| papers   | citations      | h-index      | g-index        |
|          |                |              |                |
|          |                |              |                |
| 124      | 124            | 124          | 8200           |
| all docs | docs citations | times ranked | citing authors |
|          |                |              |                |

li Lun

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Hydrogel machines. Materials Today, 2020, 36, 102-124.                                                                                                                                                                 | 14.2 | 625       |
| 2  | Tough Supramolecular Polymer Networks with Extreme Stretchability and Fast Roomâ€Temperature<br>Selfâ€Healing. Advanced Materials, 2017, 29, 1605325.                                                                  | 21.0 | 347       |
| 3  | Muscle-like fatigue-resistant hydrogels by mechanical training. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10244-10249.                                               | 7.1  | 318       |
| 4  | Anti-fatigue-fracture hydrogels. Science Advances, 2019, 5, eaau8528.                                                                                                                                                  | 10.3 | 305       |
| 5  | Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA<br>Nanoparticles. Advanced Materials, 2019, 31, e1902575.                                                        | 21.0 | 244       |
| 6  | 3D printing of highly stretchable hydrogel with diverse UV curable polymers. Science Advances, 2021,<br>7, .                                                                                                           | 10.3 | 233       |
| 7  | Gold Nanorods Coated with Mesoporous Silica Shell as Drug Delivery System for Remote Near<br>Infrared Lightâ€Activated Release and Potential Phototherapy. Small, 2015, 11, 2323-2332.                                 | 10.0 | 213       |
| 8  | Fatigue-resistant adhesion of hydrogels. Nature Communications, 2020, 11, 1071.                                                                                                                                        | 12.8 | 187       |
| 9  | Biomimetic Supramolecular Polymer Networks Exhibiting both Toughness and Selfâ€Recovery. Advanced<br>Materials, 2017, 29, 1604951.                                                                                     | 21.0 | 185       |
| 10 | Cucurbit[ <i>n</i> ]uril-Based Microcapsules Self-Assembled within Microfluidic Droplets: A Versatile<br>Approach for Supramolecular Architectures and Materials. Accounts of Chemical Research, 2017, 50,<br>208-217. | 15.6 | 181       |
| 11 | Triphase Microfluidicâ€Directed Selfâ€Assembly: Anisotropic Colloidal Photonic Crystal Supraparticles<br>and Multicolor Patterns Made Easy. Angewandte Chemie - International Edition, 2012, 51, 2375-2378.            | 13.8 | 177       |
| 12 | Ingestible hydrogel device. Nature Communications, 2019, 10, 493.                                                                                                                                                      | 12.8 | 168       |
| 13 | Highâ€Performance Wearable Microâ€Supercapacitors Based on Microfluidicâ€Directed Nitrogenâ€Doped<br>Graphene Fiber Electrodes. Advanced Functional Materials, 2017, 27, 1702493.                                      | 14.9 | 144       |
| 14 | Mechanically Robust and UV urable Shapeâ€Memory Polymers for Digital Light Processing Based 4D<br>Printing. Advanced Materials, 2021, 33, e2101298.                                                                    | 21.0 | 129       |
| 15 | Poly( <i>N</i> â€vinylcaprolactam): A Thermoresponsive Macromolecule with Promising Future in<br>Biomedical Field. Advanced Healthcare Materials, 2014, 3, 1941-1968.                                                  | 7.6  | 119       |
| 16 | Preparation and characterization of organic-soluble acetylated starch nanocrystals. Carbohydrate<br>Polymers, 2010, 80, 1078-1084.                                                                                     | 10.2 | 116       |
| 17 | Anisotropically Fatigueâ€Resistant Hydrogels. Advanced Materials, 2021, 33, e2102011.                                                                                                                                  | 21.0 | 114       |
| 18 | Bioinspired supramolecular fibers drawn from a multiphase self-assembled hydrogel. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8163-8168.                              | 7.1  | 111       |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Large-scale colloidal films with robust structural colors. Materials Horizons, 2019, 6, 90-96.                                                                                                                          | 12.2 | 106       |
| 20 | Interfacial assembly of dendritic microcapsules with host–guest chemistry. Nature Communications, 2014, 5, 5772.                                                                                                        | 12.8 | 101       |
| 21 | Cucurbit[ <i>n</i> ]uril Supramolecular Hydrogel Networks as Tough and Healable Adhesives.<br>Advanced Functional Materials, 2018, 28, 1800848.                                                                         | 14.9 | 98        |
| 22 | Design of hybrid nanovehicles for remotely triggered drug release: an overview. Journal of Materials<br>Chemistry B, 2015, 3, 6117-6147.                                                                                | 5.8  | 95        |
| 23 | Supramolecularly Engineered Circular Bivalent Aptamer for Enhanced Functional Protein Delivery.<br>Journal of the American Chemical Society, 2018, 140, 6780-6784.                                                      | 13.7 | 91        |
| 24 | Dynamic Interfacial Adhesion through Cucurbit[ <i>n</i> ]uril Molecular Recognition. Angewandte<br>Chemie - International Edition, 2018, 57, 8854-8858.                                                                 | 13.8 | 83        |
| 25 | A Covalent Black Phosphorus/Metal–Organic Framework Heteroâ€nanostructure for Highâ€Performance<br>Flexible Supercapacitors. Angewandte Chemie - International Edition, 2021, 60, 10366-10374.                          | 13.8 | 82        |
| 26 | Supramolecular hydrogel microcapsules via cucurbit[8]uril host–guest interactions with triggered and UV-controlled molecular permeability. Chemical Science, 2015, 6, 4929-4933.                                        | 7.4  | 77        |
| 27 | Synthesis of thermoâ€responsive poly( <i>N</i> â€vinylcaprolactam)â€containing block copolymers by cobaltâ€mediated radical polymerization. Journal of Polymer Science Part A, 2012, 50, 400-408.                       | 2.3  | 75        |
| 28 | In‣itu Encapsulation of Protein into Nanoscale Hydrogenâ€Bonded Organic Frameworks for<br>Intracellular Biocatalysis. Angewandte Chemie - International Edition, 2021, 60, 22315-22321.                                 | 13.8 | 70        |
| 29 | Heat-triggered drug release systems based on mesoporous silica nanoparticles filled with a maghemite core and phase-change molecules as gatekeepers. Journal of Materials Chemistry B, 2014, 2, 59-70.                  | 5.8  | 68        |
| 30 | Tough Hydrogel Bioadhesives for Sutureless Wound Sealing, Hemostasis and Biointerfaces. Advanced<br>Functional Materials, 2022, 32, .                                                                                   | 14.9 | 67        |
| 31 | Bioinspired 2D Isotropically Fatigueâ€Resistant Hydrogels. Advanced Materials, 2022, 34, e2107106.                                                                                                                      | 21.0 | 66        |
| 32 | Chitin nanocrystals grafted with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their effects on thermal behavior of PHBV. Carbohydrate Polymers, 2012, 87, 784-789.                                                  | 10.2 | 65        |
| 33 | Controlling Spatiotemporal Mechanics of Supramolecular Hydrogel Networks with Highly Branched<br>Cucurbit[8]uril Polyrotaxanes. Advanced Functional Materials, 2018, 28, 1702994.                                       | 14.9 | 65        |
| 34 | Hierarchical Selfâ€assembly of Discrete Metal–Organic Cages into Supramolecular Nanoparticles for<br>Intracellular Protein Delivery. Angewandte Chemie - International Edition, 2021, 60, 5429-5435.                    | 13.8 | 64        |
| 35 | Gold nanorods coated with a thermo-responsive poly(ethylene glycol)-b-poly(N-vinylcaprolactam)<br>corona as drug delivery systems for remotely near infrared-triggered release. Polymer Chemistry,<br>2014, 5, 799-813. | 3.9  | 63        |
| 36 | Triggerâ€Detachable Hydrogel Adhesives for Bioelectronic Interfaces. Advanced Functional Materials, 2021, 31, 2106446.                                                                                                  | 14.9 | 63        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Unexpected stability of aqueous dispersions of raspberry-like colloids. Nature Communications, 2018, 9, 3614.                                                                                                             | 12.8 | 57        |
| 38 | Glucose-, pH- and thermo-responsive nanogels crosslinked by functional superparamagnetic<br>maghemite nanoparticles as innovative drug delivery systems. Journal of Materials Chemistry B, 2014,<br>2, 1009.              | 5.8  | 53        |
| 39 | Uniform fluorescent photonic crystal supraballs generated from nanocrystal-loaded hydrogel<br>microspheres. Journal of Materials Chemistry, 2010, 20, 6182.                                                               | 6.7  | 52        |
| 40 | Supramolecular Nested Microbeads as Building Blocks for Macroscopic Selfâ€Healing Scaffolds.<br>Angewandte Chemie - International Edition, 2018, 57, 3079-3083.                                                           | 13.8 | 50        |
| 41 | Distinguishing relaxation dynamics in transiently crosslinked polymeric networks. Polymer<br>Chemistry, 2017, 8, 5336-5343.                                                                                               | 3.9  | 49        |
| 42 | Aqueous Polymer Selfâ€Assembly Based on Cucurbit[ <i>n</i> ]urilâ€Mediated Hostâ€Guest Interactions.<br>Macromolecular Chemistry and Physics, 2016, 217, 319-332.                                                         | 2.2  | 47        |
| 43 | Biomimetic Supramolecular Fibers Exhibit Waterâ€Induced Supercontraction. Advanced Materials, 2018,<br>30, e1707169.                                                                                                      | 21.0 | 46        |
| 44 | Supramolecular colloidosomes: fabrication, characterisation and triggered release of cargo.<br>Chemical Communications, 2014, 50, 7048-7051.                                                                              | 4.1  | 45        |
| 45 | Reversibly crosslinked thermo- and redox-responsive nanogels for controlled drug release. Polymer Chemistry, 2014, 5, 77-88.                                                                                              | 3.9  | 44        |
| 46 | Electrostatically Directed Selfâ€Assembly of Ultrathin Supramolecular Polymer Microcapsules.<br>Advanced Functional Materials, 2015, 25, 4091-4100.                                                                       | 14.9 | 44        |
| 47 | Spherical Colloidal Photonic Crystals with Selected Lattice Plane Exposure and Enhanced Color<br>Saturation for Dynamic Optical Displays. ACS Applied Materials & Interfaces, 2019, 11, 42629-42634.                      | 8.0  | 43        |
| 48 | Label-Free Analysis and Sorting of Microalgae and Cyanobacteria in Microdroplets by Intrinsic<br>Chlorophyll Fluorescence for the Identification of Fast Growing Strains. Analytical Chemistry, 2016,<br>88, 10445-10451. | 6.5  | 42        |
| 49 | Breath figure lithography for the construction of a hierarchical structure in sponges and their applications to oil/water separation. Journal of Materials Chemistry A, 2017, 5, 16369-16375.                             | 10.3 | 42        |
| 50 | Supramolecular polymer networks based on cucurbit[8]uril host–guest interactions as aqueous<br>photo-rheological fluids. Polymer Chemistry, 2015, 6, 7652-7657.                                                           | 3.9  | 41        |
| 51 | Hydrogel Bioadhesives with Extreme Acidâ€Tolerance for Gastric Perforation Repairing. Advanced<br>Functional Materials, 2022, 32, .                                                                                       | 14.9 | 41        |
| 52 | Granular hydrogels for 3D bioprinting applications. View, 2020, 1, 20200060.                                                                                                                                              | 5.3  | 39        |
| 53 | Sub-5 nm single crystalline organic p–n heterojunctions. Nature Communications, 2021, 12, 2774.                                                                                                                           | 12.8 | 39        |
| 54 | Dynamic Interfacial Adhesion through Cucurbit[ <i>n</i> ]uril Molecular Recognition. Angewandte<br>Chemie, 2018, 130, 8992-8996.                                                                                          | 2.0  | 35        |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Gold Nanorods with Phaseâ€Changing Polymer Corona for Remotely Nearâ€Infraredâ€Triggered Drug<br>Release. Chemistry - an Asian Journal, 2014, 9, 275-288.                                                                  | 3.3  | 34        |
| 56 | Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for<br>multi-stimuli triggered drug release. Nanoscale, 2013, 5, 11464.                                                             | 5.6  | 33        |
| 57 | Microfluidic Droplet-Facilitated Hierarchical Assembly for Dual Cargo Loading and Synergistic Delivery. ACS Applied Materials & Interfaces, 2016, 8, 8811-8820.                                                            | 8.0  | 33        |
| 58 | Dynamic intermolecular interactions through hydrogen bonding of water promote heat conduction in hydrogels. Materials Horizons, 2020, 7, 2936-2943.                                                                        | 12.2 | 33        |
| 59 | Polyâ€Î³â€Glutamic Acid Microgelâ€Encapsulated Probiotics with Gastric Acid Resistance and Smart<br>Inflammatory Factor Targeted Delivery Performance to Ameliorate Colitis. Advanced Functional<br>Materials, 2022, 32, . | 14.9 | 33        |
| 60 | Spatially Controlled Supramolecular Polymerization of Peptide Nanotubes by Microfluidics.<br>Angewandte Chemie - International Edition, 2020, 59, 6902-6908.                                                               | 13.8 | 32        |
| 61 | Bioinspired 3D Printing of Functional Materials by Harnessing Enzymeâ€Induced Biomineralization.<br>Advanced Functional Materials, 2022, 32, .                                                                             | 14.9 | 32        |
| 62 | Patterned Arrays of Supramolecular Microcapsules. Advanced Functional Materials, 2018, 28, 1800550.                                                                                                                        | 14.9 | 31        |
| 63 | Emerging Two-Dimensional Crystallization of Cucurbit[8]uril Complexes: From Supramolecular<br>Polymers to Nanofibers. Journal of the American Chemical Society, 2019, 141, 14021-14025.                                    | 13.7 | 29        |
| 64 | 3D Printed Biocatalytic Living Materials with Dualâ€Network Reinforced Bioinks. Small, 2022, 18,<br>e2104820.                                                                                                              | 10.0 | 29        |
| 65 | Bioinspired hydrogel microfibres colour-encoded with colloidal crystals. Materials Horizons, 2019, 6,<br>1938-1943.                                                                                                        | 12.2 | 25        |
| 66 | Thermo-responsive gold/poly(vinyl alcohol)-b-poly(N-vinylcaprolactam) core–corona nanoparticles as<br>a drug delivery system. Polymer Chemistry, 2014, 5, 5289-5299.                                                       | 3.9  | 24        |
| 67 | Influence of treating parameters on thermomechanical properties of recycled epoxy-acid vitrimers.<br>Soft Matter, 2020, 16, 1668-1677.                                                                                     | 2.7  | 24        |
| 68 | Droplet-based microfluidic analysis and screening of single plant cells. PLoS ONE, 2018, 13, e0196810.                                                                                                                     | 2.5  | 23        |
| 69 | Viscoelastic Hydrogel Microfibers Exploiting Cucurbit[8]uril Host–Guest Chemistry and<br>Microfluidics. ACS Applied Materials & Interfaces, 2020, 12, 17929-17935.                                                         | 8.0  | 23        |
| 70 | Photonic Plasticines with Uniform Structural Colors, High Processability, and Selfâ€Healing<br>Properties. Small, 2021, 17, e2007426.                                                                                      | 10.0 | 23        |
| 71 | Droplet-based microfluidic screening and sorting of microalgal populations for strain engineering applications. Algal Research, 2021, 56, 102293.                                                                          | 4.6  | 23        |
| 72 | Dual-responsive supramolecular colloidal microcapsules from cucurbit[8]uril molecular recognition in microfluidic droplets. Polymer Chemistry, 2016, 7, 5996-6002.                                                         | 3.9  | 22        |

| #  | Article                                                                                                                                                                                                               | IF         | CITATIONS     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| 73 | Catalytic polymeric nanocomposites via cucurbit[n]uril host–guest interactions. Nanoscale, 2015, 7,<br>13416-13419.                                                                                                   | 5.6        | 20            |
| 74 | Toward a versatile toolbox for cucurbit[ <i>n</i> ]urilâ€based supramolecular hydrogel networks<br>through <i>in situ</i> polymerization. Journal of Polymer Science Part A, 2017, 55, 3105-3109.                     | 2.3        | 20            |
| 75 | Structural Design of Robust and Biocompatible Photonic Hydrogels from an In Situ Cross-Linked<br>Hyperbranched Polymer System. Chemistry of Materials, 2018, 30, 6091-6098.                                           | 6.7        | 20            |
| 76 | Selective RNA interference and gene silencing using reactive oxygen species-responsive lipid nanoparticles. Chemical Communications, 2019, 55, 8170-8173.                                                             | 4.1        | 20            |
| 77 | Acoustic-Controlled Bubble Generation and Fabrication of 3D Polymer Porous Materials. ACS Applied Materials & amp; Interfaces, 2020, 12, 22318-22326.                                                                 | 8.0        | 20            |
| 78 | Tetraphenylethyleneâ€Featured Fluorescent Supramolecular Nanoparticles for Intracellular<br>Trafficking of Protein Delivery and Neuroprotection. Angewandte Chemie - International Edition, 2021,<br>60, 26740-26746. | 13.8       | 19            |
| 79 | Robust Hydrogel Adhesion by Harnessing Bioinspired Interfacial Mineralization. Small, 2022, 18, .                                                                                                                     | 10.0       | 19            |
| 80 | Synthesis, crystallization and hydrolysis of aromatic–aliphatic copolyester: Poly(trimethylene) Tj ETQq0 0 0 rgB                                                                                                      | T /Overloc | k 10 Tf 50 46 |
| 81 | Surfaceâ€Bound Cucurbit[8]uril Catenanes on Magnetic Nanoparticles Exhibiting Molecular<br>Recognition. Chemistry - an Asian Journal, 2016, 11, 2382-2386.                                                            | 3.3        | 15            |
| 82 | One-step synthesis of nitrogen-doped multi-emission carbon dots and their fluorescent sensing in HClO and cellular imaging. Mikrochimica Acta, 2021, 188, 330.                                                        | 5.0        | 15            |
|    |                                                                                                                                                                                                                       |            |               |

| 83 | A Click Approach to Chiralâ€Đendronized Polyfluorene Derivatives. Macromolecular Rapid<br>Communications, 2007, 28, 2249-2255.                                                           | 3.9              | 14              |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|
| 84 | Droplet microfluidics on analysis of pathogenic microbes for wastewater-based epidemiology. TrAC -<br>Trends in Analytical Chemistry, 2021, 143, 116333.                                 | 11.4             | 14              |
| 85 | Fabrication of quantum dot-based photonic materials from small to large via interfacial self-assembly. Journal of Materials Chemistry, 2011, 21, 8496.                                   | 6.7              | 13              |
| 86 | In‣itu Encapsulation of Protein into Nanoscale Hydrogenâ€Bonded Organic Frameworks for<br>Intracellular Biocatalysis. Angewandte Chemie, 2021, 133, 22489-22495.                         | 2.0              | 13              |
| 87 | Hierarchical Selfâ€assembly of Discrete Metal–Organic Cages into Supramolecular Nanoparticles for<br>Intracellular Protein Delivery. Angewandte Chemie, 2021, 133, 5489-5495.            | 2.0              | 13              |
| 88 | Injectable Granular Hydrogels as Colloidal Assembly Microreactors for Customized Structural<br>Colored Objects. Angewandte Chemie - International Edition, 2022, 61, .                   | 13.8             | 13              |
| 89 | A Novel Aromaticâ <sup>~,</sup> Aliphatic Copolyester of Poly(ethylene- <i>co</i> -diethylene) Tj ETQq1 1 0.784314 rgBT /Overl<br>& Engineering Chemistry Research, 2010, 49, 9803-9810. | ock 10 Tf<br>3.7 | 50 107 Td<br>12 |

90Cucurbit[8]urilâ€Regulated Colloidal Dispersions Exhibiting Photocontrolled Rheological Behavior.10.01290Small, 2018, 14, e1703352.10.012

| #   | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Integration of Palladium Nanoparticles with Surface Engineered Metal–Organic Frameworks for<br>Cell-Selective Bioorthogonal Catalysis and Protein Activity Regulation. ACS Applied Materials &<br>Interfaces, 2022, 14, 10117-10124. | 8.0  | 12        |
| 92  | Visibleâ€Light Facilitated Fluorescence "Switchâ€On―Labelling of 5â€Formylpyrimidine RNA. Advanced<br>Synthesis and Catalysis, 2019, 361, 5406-5411.                                                                                 | 4.3  | 11        |
| 93  | Displacement Induced Off–On Fluorescent Biosensor Targeting IDO1 Activity in Live Cells. Analytical Chemistry, 2019, 91, 14943-14950.                                                                                                | 6.5  | 11        |
| 94  | Spatially Controlled Supramolecular Polymerization of Peptide Nanotubes by Microfluidics.<br>Angewandte Chemie, 2020, 132, 6969-6975.                                                                                                | 2.0  | 11        |
| 95  | A Covalent Black Phosphorus/Metal–Organic Framework Heteroâ€nanostructure for Highâ€Performance<br>Flexible Supercapacitors. Angewandte Chemie, 2021, 133, 10454-10462.                                                              | 2.0  | 11        |
| 96  | Surface-immobilised micelles via cucurbit[8]uril-rotaxanes for solvent-induced burst release.<br>Chemical Communications, 2015, 51, 4858-4860.                                                                                       | 4.1  | 10        |
| 97  | Emerging Applications of 3D Printing in Biomanufacturing. Trends in Biotechnology, 2021, 39, 1114-1116.                                                                                                                              | 9.3  | 10        |
| 98  | Supracolloidal Architectures Selfâ€Assembled in Microdroplets. Chemistry - A European Journal, 2015,<br>21, 15516-15519.                                                                                                             | 3.3  | 9         |
| 99  | Polymeric raspberry-like particles <i>via</i> template-assisted polymerisation. Polymer Chemistry, 2019, 10, 3772-3777.                                                                                                              | 3.9  | 9         |
| 100 | Construction of core–shell microcapsules <i>via</i> focused surface acoustic wave microfluidics.<br>Lab on A Chip, 2020, 20, 3104-3108.                                                                                              | 6.0  | 9         |
| 101 | Microdroplets confined assembly of opal composites in dynamic borate ester-based networks.<br>Chemical Engineering Journal, 2021, 426, 127581.                                                                                       | 12.7 | 9         |
| 102 | Biaxially Morphing Droplet Shape by an Active Surface. Advanced Materials Interfaces, 2021, 8, 2001199.                                                                                                                              | 3.7  | 9         |
| 103 | Materialâ€mediated cell immobilization technology in the biological fermentation proces. Biofuels,<br>Bioproducts and Biorefining, 2021, 15, 1160-1173.                                                                              | 3.7  | 9         |
| 104 | Reactive Oxygen Species─Responsive Lipid Nanoparticles for Effective RNAi and Corneal<br>Neovascularization Therapy. ACS Applied Materials & Interfaces, 2022, 14, 17022-17031.                                                      | 8.0  | 9         |
| 105 | Highly selective generation of singlet oxygen from dioxygen with atomically dispersed catalysts.<br>Chemical Science, 2022, 13, 5606-5615.                                                                                           | 7.4  | 9         |
| 106 | Synthesis of poly(ethylene adipate-co-l-lactic acid) copolymers via ring opening polymerization.<br>Polymer Bulletin, 2011, 66, 187-197.                                                                                             | 3.3  | 8         |
| 107 | Spatially and Reversibly Actuating Soft Gel Structure by Harnessing Multimode Elastic Instabilities.<br>ACS Applied Materials & Interfaces, 2021, 13, 36361-36369.                                                                   | 8.0  | 8         |
| 108 | Cucurbit[7]uril-based high-performance catalytic microreactors. Nanoscale, 2018, 10, 14835-14839.                                                                                                                                    | 5.6  | 7         |

| #   | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Online Handwritten Mongolian Word Recognition Using MWRCNN and Position Maps. , 2016, , .                                                                                                                                  |      | 6         |
| 110 | Supramolecular Nested Microbeads as Building Blocks for Macroscopic Selfâ€Healing Scaffolds.<br>Angewandte Chemie, 2018, 130, 3133-3137.                                                                                   | 2.0  | 6         |
| 111 | Sessile Microdropletâ€Based Writing Board for Patterning of Structural Colored Hydrogels. Advanced<br>Materials Interfaces, 2021, 8, 2001201.                                                                              | 3.7  | 6         |
| 112 | Facile Synthesis of Chiral Diphosphine ontaining Multiple Dendrimeric Catalysts for Enantioselective<br>Hydrogenation. Chinese Journal of Chemistry, 2012, 30, 2009-2015.                                                  | 4.9  | 4         |
| 113 | Single-Cell Analysis Identifies Thymic Maturation Delay in Growth-Restricted Neonatal Mice. Frontiers in Immunology, 2018, 9, 2523.                                                                                        | 4.8  | 4         |
| 114 | Microfluidic encapsulation of supramolecular optical chemosensors for high-throughput analysis and screening. Sensors and Actuators B: Chemical, 2022, 355, 131302.                                                        | 7.8  | 3         |
| 115 | Bioinspired 2D Isotropically Fatigueâ€Resistant Hydrogels (Adv. Mater. 8/2022). Advanced Materials, 2022,<br>34, .                                                                                                         | 21.0 | 2         |
| 116 | DNAzymeâ€Catalyzed Cellular Oxidative Stress Amplification for Proâ€protein Activation in Living Cells.<br>ChemBioChem, 2021, 22, 2608-2613.                                                                               | 2.6  | 1         |
| 117 | Injectable Granular Hydrogels as Colloidal Assembly Microreactors for Customized Structural<br>Colored Objects. Angewandte Chemie, 2022, 134, .                                                                            | 2.0  | 1         |
| 118 | Wearable Devices: Highâ€Performance Wearable Micro‧upercapacitors Based on Microfluidicâ€Directed<br>Nitrogenâ€Doped Graphene Fiber Electrodes (Adv. Funct. Mater. 36/2017). Advanced Functional Materials,<br>2017, 27, . | 14.9 | 0         |
| 119 | Shapeâ€Memory Polymers: Mechanically Robust and UVâ€Curable Shapeâ€Memory Polymers for Digital Light<br>Processing Based 4D Printing (Adv. Mater. 27/2021). Advanced Materials, 2021, 33, 2170210.                         | 21.0 | 0         |