Nathan S Hart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10391050/publications.pdf

Version: 2024-02-01

44 papers 3,922 citations

147801 31 h-index 243625 44 g-index

45 all docs

45 docs citations

45 times ranked

2839 citing authors

#	Article	IF	Citations
1	Visual Opsin Diversity in Sharks and Rays. Molecular Biology and Evolution, 2020, 37, 811-827.	8.9	20
2	Retinal topography and spectral sensitivity of the Port Jackson shark (<scp><i>Heterodontus) Tj ETQq0 0 0 rgBT</i></scp>	Overlock	R 10 Tf 50 702
3	Retinal adaptations of southern bluefin tuna larvae: Implications for culture. Aquaculture, 2019, 507, 222-232.	3.5	13
4	Ontogenetic changes in spectral sensitivity and retinal topography in the retina of the yellowtail kingfish (Seriola lalandi): Implications for the global Seriola aquaculture industry. Aquaculture, 2017, 474, 130-137.	3.5	1
5	Visual pigments in a palaeognath bird, the emu <i>Dromaius novaehollandiae</i> : implications for spectral sensitivity and the origin of ultraviolet vision. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161063.	2.6	17
6	Spatial resolving power and spectral sensitivity of the saltwater crocodile, <i>Crocodylus porosus</i> , and the freshwater crocodile, <i>Crocodylus johnstoni</i> , Journal of Experimental Biology, 2016, 219, 1394-1404.	1.7	40
7	From crypsis to mimicry: changes in colour and the configuration of the visual system during ontogenetic habitat transitions in a coral reef fish. Journal of Experimental Biology, 2016, 219, 2545-58.	1.7	42
8	Fluorescence characterisation and visual ecology of pseudocheilinid wrasses. Frontiers in Zoology, 2016, 13, 13.	2.0	14
9	Variations in retinal photoreceptor topography and the organization of the rodâ€free zone reflect behavioral diversity in Australian passerines. Journal of Comparative Neurology, 2015, 523, 1073-1094.	1.6	38
10	Spectral Tuning in the Eyes of Deep-Sea Lanternfishes (Myctophidae): A Novel Sexually Dimorphic Intra-Ocular Filter. Brain, Behavior and Evolution, 2015, 85, 77-93.	1.7	17
11	An Integrative Framework for the Appraisal of Coloration in Nature. American Naturalist, 2015, 185, 705-724.	2.1	206
12	Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1493-1498.	7.1	129
13	Vision and photoentrainment in fishes: The effects of natural and anthropogenic perturbation. Integrative Zoology, 2015, 10, 15-28.	2.6	23
14	Topographic specializations in the retinal ganglion cell layer correlate with lateralized visual behavior, ecology, and evolution in cockatoos. Journal of Comparative Neurology, 2014, 522, 3363-3385.	1.6	40
15	A Comparison of Spatial Analysis Methods for the Construction of Topographic Maps of Retinal Cell Density. PLoS ONE, 2014, 9, e93485.	2.5	45
16	Retinal Ganglion Cell Topography and Spatial Resolving Power in Penguins. Brain, Behavior and Evolution, 2012, 80, 254-268.	1.7	59
17	Limited variation in visual sensitivity among bowerbird species suggests that there is no link between spectral tuning and variation in display colouration. Journal of Experimental Biology, 2012, 215, 1090-1105.	1.7	37
18	Photoreceptor types, visual pigments, and topographic specializations in the retinas of hydrophiid sea snakes. Journal of Comparative Neurology, 2012, 520, 1246-1261.	1.6	53

#	Article	IF	CITATIONS
19	Tank color increases growth, and alters color preference and spectral sensitivity, in barramundi (Lates calcarifer). Aquaculture, 2011, 322-323, 235-240.	3.5	36
20	Sexual selection based on egg colour: physiological models and egg discrimination experiments in a cavity-nesting bird. Behavioral Ecology and Sociobiology, 2011, 65, 1721-1730.	1.4	26
21	A spitting image: specializations in archerfish eyes for vision at the interface between air and water. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2607-2615.	2.6	81
22	Visual pigment in the lens eyes of the box jellyfish <i>Chiropsella bronzie</i> . Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1843-1848.	2.6	9
23	Mimicry, colour forms and spectral sensitivity of the bluestriped fangblenny, <i>Plagiotremus rhinorhynchos </i> . Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1565-1573.	2.6	25
24	Assessing the use of genomic DNA as a predictor of the maximum absorbance wavelength of avian SWS1 opsin visual pigments. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 167-173.	1.6	38
25	The evolution of early vertebrate photoreceptors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2925-2940.	4.0	89
26	Red fluorescence in reef fish: A novel signalling mechanism?. BMC Ecology, 2008, 8, 16.	3.0	90
27	Visual ecology of the Australian lungfish (Neoceratodus forsteri). BMC Ecology, 2008, 8, 21.	3.0	28
28	Spectral sensitivities of the seahorses Hippocampus subelongatus and Hippocampus barbouri and the pipefish Stigmatopora argus. Visual Neuroscience, 2007, 24, 345-354.	1.0	34
29	Iridescent structurally based coloration of eyespots correlates with mating success in the peacock. Behavioral Ecology, 2007, 18, 1123-1131.	2.2	100
30	Avian Visual Pigments: Characteristics, Spectral Tuning, and Evolution. American Naturalist, 2007, 169, S7-S26.	2.1	273
31	Colour vision and visual ecology of the blue-spotted maskray, Dasyatis kuhlii Müller & Henle, 1814. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2007, 193, 67-79.	1.6	66
32	Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity. Journal of Experimental Biology, 2006, 209, 4776-4787.	1.7	62
33	Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2005, 191, 381-392.	1.6	219
34	Cone topography and spectral sensitivity in two potentially trichromatic marsupials, the quokka () Tj ETQq0 0 C Sciences, 2005, 272, 791-796.) rgBT /Ove 2.6	rlock 10 Tf 50 48
35	Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch. Journal of Experimental Biology, 2004, 207, 4587-4594.	1.7	80
36	Microspectrophotometry of visual pigments and oil droplets in a marine bird, the wedge-tailed shearwater Puffinus pacificus: topographic variations in photoreceptor spectral characteristics. Journal of Experimental Biology, 2004, 207, 1229-1240.	1.7	94

#	Article	IF	CITATIONS
37	Trichromacy in Australian Marsupials. Current Biology, 2002, 12, 657-660.	3.9	160
38	Vision in the peafowl (Aves: <i>Pavo cristatus</i>). Journal of Experimental Biology, 2002, 205, 3925-3935.	1.7	201
39	Developmental changes in the cone visual pigments of black bream Acanthopagrus butcheri. Journal of Experimental Biology, 2002, 205, 3661-7.	1.7	54
40	Vision in the peafowl (Aves: Pavo cristatus). Journal of Experimental Biology, 2002, 205, 3925-35.	1.7	160
41	Variations in cone photoreceptor abundance and the visual ecology of birds. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2001, 187, 685-697.	1.6	225
42	The Visual Ecology of Avian Photoreceptors. Progress in Retinal and Eye Research, 2001, 20, 675-703.	15.5	506
43	Ultraviolet Vision in Birds. Advances in the Study of Behavior, 2000, 29, 159-214.	1.6	378
44	Does Lepidopteran Larval Crypsis Extend into the Ultraviolet?. Die Naturwissenschaften, 1998, 85, 189-192.	1.6	44