Nathan S Hart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10391050/publications.pdf

Version: 2024-02-01

44 papers 3,922 citations

147801 31 h-index 243625 44 g-index

45 all docs

45 docs citations

45 times ranked

2839 citing authors

#	Article	IF	Citations
1	The Visual Ecology of Avian Photoreceptors. Progress in Retinal and Eye Research, 2001, 20, 675-703.	15.5	506
2	Ultraviolet Vision in Birds. Advances in the Study of Behavior, 2000, 29, 159-214.	1.6	378
3	Avian Visual Pigments: Characteristics, Spectral Tuning, and Evolution. American Naturalist, 2007, 169, S7-S26.	2.1	273
4	Variations in cone photoreceptor abundance and the visual ecology of birds. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2001, 187, 685-697.	1.6	225
5	Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2005, 191, 381-392.	1.6	219
6	An Integrative Framework for the Appraisal of Coloration in Nature. American Naturalist, 2015, 185, 705-724.	2.1	206
7	Vision in the peafowl (Aves: <i>Pavo cristatus</i>). Journal of Experimental Biology, 2002, 205, 3925-3935.	1.7	201
8	Trichromacy in Australian Marsupials. Current Biology, 2002, 12, 657-660.	3.9	160
9	Vision in the peafowl (Aves: Pavo cristatus). Journal of Experimental Biology, 2002, 205, 3925-35.	1.7	160
10	Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1493-1498.	7.1	129
11	Iridescent structurally based coloration of eyespots correlates with mating success in the peacock. Behavioral Ecology, 2007, 18, 1123-1131.	2.2	100
12	Microspectrophotometry of visual pigments and oil droplets in a marine bird, the wedge-tailed shearwater Puffinus pacificus: topographic variations in photoreceptor spectral characteristics. Journal of Experimental Biology, 2004, 207, 1229-1240.	1.7	94
13	Red fluorescence in reef fish: A novel signalling mechanism?. BMC Ecology, 2008, 8, 16.	3.0	90
14	The evolution of early vertebrate photoreceptors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2925-2940.	4.0	89
15	A spitting image: specializations in archerfish eyes for vision at the interface between air and water. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2607-2615.	2.6	81
16	Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch. Journal of Experimental Biology, 2004, 207, 4587-4594.	1.7	80
17	Colour vision and visual ecology of the blue-spotted maskray, Dasyatis kuhlii Müller & Henle, 1814. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2007, 193, 67-79.	1.6	66
18	Cone photoreceptor oil droplet pigmentation is affected by ambient light intensity. Journal of Experimental Biology, 2006, 209, 4776-4787.	1.7	62

#	Article	IF	CITATIONS
19	Retinal Ganglion Cell Topography and Spatial Resolving Power in Penguins. Brain, Behavior and Evolution, 2012, 80, 254-268.	1.7	59
20	Developmental changes in the cone visual pigments of black bream Acanthopagrus butcheri. Journal of Experimental Biology, 2002, 205, 3661-7.	1.7	54
21	Photoreceptor types, visual pigments, and topographic specializations in the retinas of hydrophiid sea snakes. Journal of Comparative Neurology, 2012, 520, 1246-1261.	1.6	53
22	Cone topography and spectral sensitivity in two potentially trichromatic marsupials, the quokka () Tj ETQq 0000 Sciences, 2005, 272, 791-796.	gBT /Over 2.6	lock 10 Tf 50 48
23	A Comparison of Spatial Analysis Methods for the Construction of Topographic Maps of Retinal Cell Density. PLoS ONE, 2014, 9, e93485.	2.5	45
24	Does Lepidopteran Larval Crypsis Extend into the Ultraviolet?. Die Naturwissenschaften, 1998, 85, 189-192.	1.6	44
25	From crypsis to mimicry: changes in colour and the configuration of the visual system during ontogenetic habitat transitions in a coral reef fish. Journal of Experimental Biology, 2016, 219, 2545-58.	1.7	42
26	Topographic specializations in the retinal ganglion cell layer correlate with lateralized visual behavior, ecology, and evolution in cockatoos. Journal of Comparative Neurology, 2014, 522, 3363-3385.	1.6	40
27	Spatial resolving power and spectral sensitivity of the saltwater crocodile, <i>Crocodylus porosus</i> , and the freshwater crocodile, <i>Crocodylus johnstoni</i> , Journal of Experimental Biology, 2016, 219, 1394-1404.	1.7	40
28	Assessing the use of genomic DNA as a predictor of the maximum absorbance wavelength of avian SWS1 opsin visual pigments. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 167-173.	1.6	38
29	Variations in retinal photoreceptor topography and the organization of the rodâ€free zone reflect behavioral diversity in Australian passerines. Journal of Comparative Neurology, 2015, 523, 1073-1094.	1.6	38
30	Limited variation in visual sensitivity among bowerbird species suggests that there is no link between spectral tuning and variation in display colouration. Journal of Experimental Biology, 2012, 215, 1090-1105.	1.7	37
31	Tank color increases growth, and alters color preference and spectral sensitivity, in barramundi (Lates calcarifer). Aquaculture, 2011, 322-323, 235-240.	3.5	36
32	Spectral sensitivities of the seahorses Hippocampus subelongatus and Hippocampus barbouri and the pipefish Stigmatopora argus. Visual Neuroscience, 2007, 24, 345-354.	1.0	34
33	Visual ecology of the Australian lungfish (Neoceratodus forsteri). BMC Ecology, 2008, 8, 21.	3.0	28
34	Sexual selection based on egg colour: physiological models and egg discrimination experiments in a cavity-nesting bird. Behavioral Ecology and Sociobiology, 2011, 65, 1721-1730.	1.4	26
35	Mimicry, colour forms and spectral sensitivity of the bluestriped fangblenny, <i>Plagiotremus rhinorhynchos </i> . Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1565-1573.	2.6	25
36	Vision and photoentrainment in fishes: The effects of natural and anthropogenic perturbation. Integrative Zoology, 2015, 10, 15-28.	2.6	23

#	Article	IF	CITATIONS
37	Visual Opsin Diversity in Sharks and Rays. Molecular Biology and Evolution, 2020, 37, 811-827.	8.9	20
38	Spectral Tuning in the Eyes of Deep-Sea Lanternfishes (Myctophidae): A Novel Sexually Dimorphic Intra-Ocular Filter. Brain, Behavior and Evolution, 2015, 85, 77-93.	1.7	17
39	Visual pigments in a palaeognath bird, the emu <i>Dromaius novaehollandiae</i> : implications for spectral sensitivity and the origin of ultraviolet vision. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161063.	2.6	17
40	Fluorescence characterisation and visual ecology of pseudocheilinid wrasses. Frontiers in Zoology, 2016, 13, 13.	2.0	14
41	Retinal adaptations of southern bluefin tuna larvae: Implications for culture. Aquaculture, 2019, 507, 222-232.	3.5	13
42	Visual pigment in the lens eyes of the box jellyfish <i>Chiropsella bronzie</i> Royal Society B: Biological Sciences, 2010, 277, 1843-1848.	2.6	9
43	Retinal topography and spectral sensitivity of the Port Jackson shark (<scp><i>Heterodontus) Tj ETQq1 1 0.7843</i></scp>	14.rgBT /C	Overlock 10
44	Ontogenetic changes in spectral sensitivity and retinal topography in the retina of the yellowtail kingfish (Seriola lalandi): Implications for the global Seriola aquaculture industry. Aquaculture, 2017, 474, 130-137.	3.5	1