
Xueqin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1039052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pu-erh tea ameliorates obesity and modulates gut microbiota in high fat diet fed mice. Food Research International, 2021, 144, 110360.	6.2	84
2	Antiâ€fatigue activity of sea cucumber peptides prepared from <i>Stichopus japonicus</i> in an endurance swimming rat model. Journal of the Science of Food and Agriculture, 2017, 97, 4548-4556.	3.5	54
3	κ-Carrageenan/locust bean gum as hard capsule gelling agents. Carbohydrate Polymers, 2017, 175, 417-424.	10.2	45
4	Three-dimensional hollow N-doped ZIF-8-derived carbon@MnO2 composites for supercapacitors. Applied Surface Science, 2020, 528, 146921.	6.1	38
5	<i>Ginkgo biloba</i> sarcotesta polysaccharide inhibits inflammatory responses through suppressing both NFâ€₽B and MAPK signaling pathway. Journal of the Science of Food and Agriculture, 2019, 99, 2329-2339.	3.5	28
6	Effect of Gellan Gum and Xanthan Gum Synergistic Interactions and Plasticizers on Physical Properties of Plant-Based Enteric Polymer Films. Polymers, 2020, 12, 121.	4.5	26
7	Optimization of fructose dehydration to 5-hydroxymethylfurfural catalyzed by SO3H-bearing lignin-derived ordered mesoporous carbon. Korean Journal of Chemical Engineering, 2019, 36, 1042-1050.	2.7	21
8	Alumina incorporated with mesoporous carbon as a novel support of Pt catalyst for asymmetric hydrogenation. Catalysis Communications, 2013, 42, 68-72.	3.3	17
9	Effective one-step reduction of Pt/alumina–carbon catalysts for asymmetric hydrogenation of α-ketoesters. Applied Catalysis A: General, 2014, 480, 50-57.	4.3	11
10	MOFs-derived carbon covered alumina (CCA) supported Pt nanoparticles as catalyst for enantioselective hydrogenation. Current Applied Physics, 2017, 17, 1347-1352.	2.4	9
11	Highly-efficient Ru/Al–SBA-15 catalysts with strong Lewis acid sites for the water-assisted hydrogenation of <i>p</i> -phthalic acid. Catalysis Science and Technology, 2020, 10, 2443-2451.	4.1	7
12	Preparation of low carbon olefins on a core–shell K–Fe ₅ C ₂ @ZSM-5 catalyst by Fischer–Tropsch synthesis. RSC Advances, 2020, 10, 26451-26459.	3.6	6
13	Drying Behavior and Kinetics of Drying Process of Plant-Based Enteric Hard Capsules. Pharmaceutics, 2021, 13, 335.	4.5	4
14	Highly-active platinum nanoparticle-encapsulated alumina-doped resorcinol–formaldehyde carbon composites for asymmetric hydrogenation. Reaction Chemistry and Engineering, 2021, 6, 1277-1284.	3.7	1
15	Preparation and intrinsic kinetics study of the scale-up production of hydroxypropyl agar by heterogeneous hydroxypropylation reaction. International Journal of Biological Macromolecules, 2022, 200, 218-225.	7.5	1