
Xochitl Blanco Cano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1038973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Jets Downstream of Collisionless Shocks. Space Science Reviews, 2018, 214, 1.	8.1	101
2	Global hybrid simulations: Foreshock waves and cavitons under radial interplanetary magnetic field geometry. Journal of Geophysical Research, 2009, 114, .	3.3	96
3	Characteristic size and shape of the mirror mode structures in the solar wind at 0.72 AU. Geophysical Research Letters, 2008, 35, .	4.0	83
4	Macrostructure of collisionless bow shocks: 2. ULF waves in the foreshock and magnetosheath. Journal of Geophysical Research, 2006, 111, .	3.3	82
5	Three-dimensional Hydrodynamical Simulation of the Exoplanet HD 209458b. Astrophysical Journal, 2007, 671, L57-L60.	4.5	74
6	Hybrid simulations of solar wind interaction with magnetized asteroids: General characteristics. Journal of Geophysical Research, 2002, 107, SSH 12-1-SSH 12-10.	3.3	70
7	Macrostructure of collisionless bow shocks: 1. Scale lengths. Journal of Geophysical Research, 2005, 110, .	3.3	70
8	ELECTROMAGNETIC WAVES NEAR THE PROTON CYCLOTRON FREQUENCY: <i>STEREO</i> OBSERVATIONS. Astrophysical Journal, 2014, 786, 123.	4.5	66
9	Ion cyclotron waves in Saturn's E ring: Initial Cassini observations. Geophysical Research Letters, 2006, 33, .	4.0	65
10	Dipolar magnetospheres and their characterization as a function of magnetic moment. Advances in Space Research, 2004, 33, 1996-2003.	2.6	60
11	Foreshock cavitons for different interplanetary magnetic field geometries: Simulations and observations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	59
12	Foreshock compressional boundary. Journal of Geophysical Research, 2009, 114, .	3.3	56
13	Waves upstream and downstream of interplanetary shocks driven by coronal mass ejections. Journal of Geophysical Research, 2012, 117, .	3.3	53
14	Electromagnetic ion cyclotron waves in the high-altitude cusp: Polar observations. Journal of Geophysical Research, 2001, 106, 19067-19079.	3.3	51
15	Mirror mode waves: Messengers from the coronal heating region. Geophysical Research Letters, 2008, 35, .	4.0	48
16	Nature of magnetic fluctuations in Saturn's middle magnetosphere. Journal of Geophysical Research, 2006, 111, .	3.3	47
17	Mirror-mode structures at the Galileo-Io flyby: Instability criterion and dispersion analysis. Journal of Geophysical Research, 1999, 104, 17479-17489.	3.3	44
18	Mirror mode structures in the solar wind at 0.72 AU. Journal of Geophysical Research, 2009, 114, .	3.3	43

#	Article	IF	CITATIONS
19	Dynamics of the foreshock compressional boundary and its connection to foreshock cavities. Journal of Geophysical Research: Space Physics, 2013, 118, 823-831.	2.4	43
20	Hybrid simulations of solar wind interaction with magnetized asteroids: Comparison with Galileo observations near Gaspra and Ida. Journal of Geophysical Research, 2003, 108, .	3.3	41
21	Upstream ultra″ow frequency waves in Mercury's foreshock region: MESSENGER magnetic field observations. Journal of Geophysical Research: Space Physics, 2013, 118, 2809-2823.	2.4	40
22	Multi-spacecraft study of foreshock cavitons upstream of the quasi-parallel bow shock. Planetary and Space Science, 2011, 59, 705-714.	1.7	37
23	Mirror-mode structures at the Galileo-Io flyby: Observations. Journal of Geophysical Research, 1999, 104, 17471-17477.	3.3	36
24	Interplanetary shocks and foreshocks observed by STEREO during 2007–2010. Journal of Geophysical Research: Space Physics, 2016, 121, 992-1008.	2.4	34
25	First Observations of Irregular Surface of Interplanetary Shocks at Ion Scales by Cluster. Astrophysical Journal Letters, 2019, 874, L13.	8.3	33
26	Proton cyclotron waves at Mars and Venus. Advances in Space Research, 2006, 38, 745-751.	2.6	32
27	STEREO observations of upstream and downstream waves at low Mach number shocks. Geophysical Research Letters, 2009, 36, .	4.0	32
28	1. Transport of Mass, Momentum and Energy in Planetary Magnetodisc Regions. Space Science Reviews, 2015, 187, 229-299.	8.1	32
29	Comparative study of ion cyclotron waves at Mars, Venus and Earth. Planetary and Space Science, 2011, 59, 1039-1047.	1.7	31
30	Statistical study of foreshock cavitons. Annales Geophysicae, 2013, 31, 2163-2178.	1.6	29
31	The Io mass-loading disk: Constraints provided by ion cyclotron wave observations. Journal of Geophysical Research, 2001, 106, 26233-26242.	3.3	28
32	Traveling Foreshocks and Transient Foreshock Phenomena. Journal of Geophysical Research: Space Physics, 2017, 122, 9148-9168.	2.4	26
33	Magnetosheath jet properties and evolution as determined by a global hybrid-Vlasov simulation. Annales Geophysicae, 2018, 36, 1171-1182.	1.6	26
34	Properties of Magnetic Reconnection and FTEs on the Dayside Magnetopause With and Without Positive IMF <i>B</i> _{<i>x</i>} Component During Southward IMF. Journal of Geophysical Research: Space Physics, 2019, 124, 4037-4048.	2.4	25
35	The Io mass-loading disk: Wave dispersion analysis. Journal of Geophysical Research, 2001, 106, 26261-26275.	3.3	24
36	Ion cyclotron waves at Io: implications for the temporal variation of Io's atmosphere. Planetary and Space Science, 2003, 51, 937-944.	1.7	22

#	Article	IF	CITATIONS
37	Global hybrid simulations of solar wind interaction with Mercury: Magnetosperic boundaries. Advances in Space Research, 2006, 38, 632-638.	2.6	21
38	Ion-cyclotron wave generation by planetary ion pickup. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 1723-1738.	1.6	21
39	Whistler waves associated with weak interplanetary shocks. Journal of Geophysical Research, 2012, 117, .	3.3	21
40	Identification of low-frequency kinetic wave modes in the Earth's ion foreshock. Annales Geophysicae, 1997, 15, 273-288.	1.6	20
41	Foreshock compressional boundaries observed by Cluster. Journal of Geophysical Research: Space Physics, 2013, 118, 698-715.	2.4	20
42	How to make a magnetosphere. Astronomy and Geophysics, 2004, 45, 3.14-3.17.	0.2	18
43	ULF waves and their influence on bow shock and magnetosheath structures. Advances in Space Research, 2006, 37, 1522-1531.	2.6	18
44	Signatures of interplanetary transients behind shocks and their associated near-surface solar activity. Annales Geophysicae, 1998, 16, 359-369.	1.6	17
45	Identification of foreshock waves with 3-s periods. Journal of Geophysical Research, 1999, 104, 4643-4656.	3.3	17
46	STEREO observations of shock formation in the solar wind. Geophysical Research Letters, 2009, 36, .	4.0	17
47	Determining ion production rates near Saturn's extended neutral cloud from ion cyclotron wave amplitudes. Journal of Geophysical Research, 2009, 114, .	3.3	17
48	Galileo observations of ion cyclotron waves in the Io torus. Advances in Space Research, 2001, 28, 1469-1474.	2.6	15
49	Mirrorâ€mode storms: STEREO observations of protracted generation of small amplitude waves. Geophysical Research Letters, 2009, 36, .	4.0	15
50	Investigating the anatomy of magnetosheath jets – MMS observations. Annales Geophysicae, 2018, 36, 655-677.	1.6	15
51	Magnetosheath jet evolution as a function of lifetime: global hybrid-Vlasov simulations compared to MMS observations. Annales Geophysicae, 2021, 39, 289-308.	1.6	15
52	Magnetosheath Jets and Plasmoids: Characteristics and Formation Mechanisms from Hybrid Simulations. Astrophysical Journal Letters, 2020, 900, L6.	8.3	14
53	Ion cyclotron waves near Io. Planetary and Space Science, 2001, 49, 1125-1136.	1.7	13
54	Different Types of Ion Populations Upstream of the 2013 October 8 Interplanetary Shock. Astrophysical Journal Letters, 2017, 849, L27.	8.3	13

#	Article	IF	CITATIONS
55	Ion cyclotron waves in Io's wake region. Planetary and Space Science, 2003, 51, 233-238.	1.7	12
56	Wave generation in moon–satellite interactions. Advances in Space Research, 2004, 33, 2078-2091.	2.6	12
57	Analysis of waves surrounding foreshock cavitons. , 2010, , .		12
58	Harmonic growth of ion yclotron waves in Saturn's magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	12
59	Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation. Annales Geophysicae, 2018, 36, 1081-1097.	1.6	12
60	ULF Wave Transmission Across Collisionless Shocks: 2.5D Local Hybrid Simulations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029283.	2.4	12
61	Ultra-low-frequency waves in the Jovian magnetosphere: causes and consequences. Planetary and Space Science, 2001, 49, 291-301.	1.7	11
62	One-dimensional hybrid simulations of obliquely propagating ion cyclotron waves: Application to ion pickup at Io. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	11
63	Mirrorâ€mode storms inside stream interaction regions and in the ambient solar wind: A kinetic study. Journal of Geophysical Research: Space Physics, 2013, 118, 17-28.	2.4	11
64	Solar wind signatures associated with magnetic clouds. Journal of Geophysical Research, 2001, 106, 3691-3702.	3.3	10
65	The Radial Variation of Interplanetary Shocks in the Inner Heliosphere: Observations by Helios, MESSENGER, and STEREO. Solar Physics, 2012, 278, 421-433.	2.5	10
66	Lowâ€frequency waves within isolated magnetic clouds and complex structures: STEREO observations. Journal of Geophysical Research: Space Physics, 2015, 120, 2363-2381.	2.4	10
67	Influence of He ⁺⁺ and Shock Geometry on Interplanetary Shocks in the Solar Wind: 2D Hybrid Simulations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027442.	2.4	10
68	Causes of Jets in the Quasiâ€Perpendicular Magnetosheath. Geophysical Research Letters, 2021, 48, e2021GL093173.	4.0	10
69	A mechanism for the production of a disk-shaped neutral source cloud at Io. Advances in Space Research, 2001, 28, 1475-1479.	2.6	9
70	Dual observations of interplanetary shocks associated with stream interaction regions. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	9
71	Magnetosheath Microstructure: Mirror Mode Waves and Jets during Southward IP Magnetic Field. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027940.	2.4	9
72	Deprojected Trajectory of Blobs in the Inner Corona. Solar Physics, 2018, 293, 1.	2.5	8

Xochitl Blanco Cano

#	Article	IF	CITATIONS
73	Characteristics of interplanetary magnetic clouds in relation to their solar association. Journal of Geophysical Research, 1999, 104, 581-591.	3.3	7
74	Composition and magnetic structure of interplanetary coronal mass ejections at 1AU. Advances in Space Research, 2006, 38, 522-527.	2.6	7
75	Calibration and testing of the MEXART antenna using solar transits. Advances in Space Research, 2006, 38, 1824-1827.	2.6	7
76	Ninety degrees pitch angle enhancements of suprathermal electrons associated with interplanetary shocks. Journal of Geophysical Research: Space Physics, 2014, 119, 7038-7060.	2.4	7
77	AMPTE-UKS observations of low frequency waves in the ion foreshock. Advances in Space Research, 1995, 15, 97-101.	2.6	6
78	Editorial: Earth-affecting Solar Transients. Solar Physics, 2018, 293, 1.	2.5	6
79	Helium in the Earth's foreshock: a global Vlasiator survey. Annales Geophysicae, 2020, 38, 1081-1099.	1.6	6
80	Interplanetary signatures of solar mass ejections. Advances in Space Research, 1997, 20, 107-110.	2.6	5
81	Bow Shocks In The Solar Wind: Lessons Towards Understanding Interplanetary Shocks. , 2010, , .		5
82	Mirror Mode Structures in the Solar Wind: STEREO Observations. , 2010, , .		5
83	Multispacecraft Study of the Interaction Between an Interplanetary Shock and a Solar Wind Flux Rope. Journal of Geophysical Research: Space Physics, 2019, 124, 9760-9773.	2.4	5
84	Coronal magnetic structures associated with interplanetary clouds. Solar Physics, 1999, 188, 163-168.	2.5	4
85	Io-jupiter interaction: Waves generated by pickup ions. Advances in Space Research, 2000, 26, 1513-1518.	2.6	4
86	Ion cyclotron waves in the Saturnian magnetosphere associated with Cassini's engine exhaust. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	4
87	STEREO interplanetary shocks and foreshocks. AIP Conference Proceedings, 2013, , .	0.4	4
88	Parametric Study of Magnetosheath Jets in 2D Local Hybrid Simulations. Frontiers in Astronomy and Space Sciences, 2022, 9, .	2.8	4
89	Kinetic theory mode properties: Application to low frequency waves in the ion foreshock. Advances in Space Research, 1997, 20, 707-711.	2.6	3
90	Title is missing!. Solar Physics, 1998, 180, 461-471.	2.5	3

6

#	Article	IF	CITATIONS
91	CME Classification Based on Wavelet Spectra. Solar Physics, 2010, 266, 337-347.	2.5	3
92	Foreshock cavitons and spontaneous hot flow anomalies: a statistical study with a global hybrid-Vlasov simulation. Annales Geophysicae, 2021, 39, 911-928.	1.6	3
93	Three Second Waves Observed Upstream Of The Earthâ \in Ms Bow Shock. AIP Conference Proceedings, 2003, , .	0.4	2
94	Electron distributions upstream and downstream of ICME driven IP shocks. AIP Conference Proceedings, 2013, , .	0.4	2
95	A morphological study of CMEs using wavelet analysis. Advances in Space Research, 2010, 46, 22-30.	2.6	1
96	Study of Interplanetary Shocks Using Multi-Spacecraft Observations. AIP Conference Proceedings, 2010, , .	0.4	1
97	The Solar Wind Interaction with Planetary Magnetospheres. , 2005, , 15-35.		1
98	Horizons of Space Plasma Physics. Advances in Space Research, 2006, 37, 1453-1454.	2.6	0
99	Effects Of Magnetic Clouds In Geomagnetic Activity. AIP Conference Proceedings, 2006, , .	0.4	0
100	Initial Observations of Interplanetary Shocks by STEREO. AIP Conference Proceedings, 2008, , .	0.4	0
101	Compressional boundaries in the Earth's foreshock. , 2013, , .		0
102	Observations of upstream ultra-low-frequency waves in the Mercury's foreshock. , 2014, , .		0
103	Solar Wind Conditions During the First 42 Months of Magnetospheric Multiscale Mission. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028207.	2.4	0
104	Transport of Mass, Momentum and Energy in Planetary Magnetodisc Regions. Space Sciences Series of ISSI, 2016, , 229-299.	0.0	0
105	Editorial: Earth-affecting Solar Transients. , 2018, , 1-6.		0