
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/103893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulation of the Drug Resistance by Platonia insignis Mart. Extract, Ethyl Acetate Fraction and Morelloflavone/Volkensiflavone (Biflavonoids) in Staphylococcus aureus Strains Overexpressing Efflux Pump Genes. Current Drug Metabolism, 2021, 22, 114-122.	0.7	9
2	2-Phenylquinoline <i>S. aureus</i> NorA Efflux Pump Inhibitors: Evaluation of the Importance of Methoxy Group Introduction. Journal of Medicinal Chemistry, 2018, 61, 7827-7848.	2.9	46
3	Studies on 2-phenylquinoline Staphylococcus aureus NorA efflux pump inhibitors: New insights on the C-6 position. European Journal of Medicinal Chemistry, 2018, 155, 428-433.	2.6	19
4	Pharmacophore-Based Repositioning of Approved Drugs as Novel <i>Staphylococcus aureus</i> NorA Efflux Pump Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 1598-1604.	2.9	59
5	Improved Potency of Indole-Based NorA Efflux Pump Inhibitors: From Serendipity toward Rational Design and Development. Journal of Medicinal Chemistry, 2017, 60, 517-523.	2.9	33
6	Searching for Novel Inhibitors of the <i>S.â€aureus</i> NorA Efflux Pump: Synthesis and Biological Evaluation of the 3â€Phenylâ€1,4â€benzothiazine Analogues. ChemMedChem, 2017, 12, 1293-1302.	1.6	28
7	Fluoroquinolone Resistance in Bacteria. , 2017, , 245-263.		3
8	The "racemic approach―in the evaluation of the enantiomeric NorA efflux pump inhibition activity of 2-phenylquinoline derivatives. Journal of Pharmaceutical and Biomedical Analysis, 2016, 129, 182-189.	1.4	14
9	Efavirenz-Associated Urinary Matrix Stone—A Rare Presentation. American Journal of the Medical Sciences, 2016, 351, 213-214.	0.4	5
10	Multidrug efflux pumps of Gram-positive bacteria. Drug Resistance Updates, 2016, 27, 1-13.	6.5	171
11	Benzocyclohexane oxide derivatives and neolignans from Piper betle inhibit efflux-related resistance in Staphylococcus aureus. RSC Advances, 2016, 6, 43518-43525.	1.7	17
12	Inhibition of the NorA multi-drug transporter by oxygenated monoterpenes. Microbial Pathogenesis, 2016, 99, 173-177.	1.3	36
13	Indole Based Weapons to Fight Antibiotic Resistance: A Structure–Activity Relationship Study. Journal of Medicinal Chemistry, 2016, 59, 867-891.	2.9	64
14	A Mass Spectrometry-Based Assay for Improved Quantitative Measurements of Efflux Pump Inhibition. PLoS ONE, 2015, 10, e0124814.	1.1	53
15	Clonal relatedness is a predictor of spontaneous multidrug efflux pump gene overexpression in Staphylococcus aureus. International Journal of Antimicrobial Agents, 2015, 45, 464-470.	1.1	12
16	Mutations within the <i>mepA</i> Operator Affect Binding of the MepR Regulatory Protein and Its Induction by MepA Substrates in Staphylococcus aureus. Journal of Bacteriology, 2015, 197, 1104-1114.	1.0	8
17	Analyses of Multidrug Efflux Pump-Like Proteins Encoded on the Staphylococcus aureus Chromosome. Antimicrobial Agents and Chemotherapy, 2015, 59, 747-748.	1.4	34

Role of Multidrug Efflux Pumps in Gram-Positive Bacteria. , 2014, , 275-285.

#	Article	IF	CITATIONS
19	Structural mechanism of transcription regulation of the <i>Staphylococcus aureus</i> multidrug efflux operon <i>mepRA</i> by the MarR family repressor MepR. Nucleic Acids Research, 2014, 42, 2774-2788.	6.5	35
20	Antimicrobial Salvage Therapy for Persistent Staphylococcal Bacteremia Using Daptomycin Plus Ceftaroline. Clinical Therapeutics, 2014, 36, 1317-1333.	1.1	151
21	A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus. International Journal of Antimicrobial Agents, 2013, 42, 513-518.	1.1	62
22	Evaluation of Daptomycin Non-Susceptible Staphylococcus aureus for Stability, Population Profiles, mprF Mutations, and Daptomycin Activity. Infectious Diseases and Therapy, 2013, 2, 187-200.	1.8	9
23	Mutagenesis and Modeling To Predict Structural and Functional Characteristics of the Staphylococcus aureus MepA Multidrug Efflux Pump. Journal of Bacteriology, 2013, 195, 523-533.	1.0	27
24	Inhibition of drug efflux pumps in <i>Staphylococcus aureus</i> : current status of potentiating existing antibiotics. Future Microbiology, 2013, 8, 491-507.	1.0	94
25	Re-evolution of the 2-Phenylquinolines: Ligand-Based Design, Synthesis, and Biological Evaluation of a Potent New Class of Staphylococcus aureus NorA Efflux Pump Inhibitors to Combat Antimicrobial Resistance. Journal of Medicinal Chemistry, 2013, 56, 4975-4989.	2.9	51
26	The Molecular Mechanisms of Allosteric Mutations Impairing MepR Repressor Function in Multidrug-Resistant Strains of Staphylococcus aureus. MBio, 2013, 4, e00528-13.	1.8	19
27	Alternative Mutational Pathways to Intermediate Resistance to Vancomycin in Methicillin-Resistant Staphylococcus aureus. Journal of Infectious Diseases, 2013, 208, 67-74.	1.9	39
28	Antibacterial Sesquiterpenoid Derivatives from Ferula ferulaeoides. Planta Medica, 2013, 79, 701-706.	0.7	16
29	Functional Consequences of Substitution Mutations in MepR, a Repressor of the Staphylococcus aureus <i>mepA</i> Multidrug Efflux Pump Gene. Journal of Bacteriology, 2013, 195, 3651-3662.	1.0	18
30	Evaluation of Ceftaroline Activity against Heteroresistant Vancomycin-Intermediate Staphylococcus aureus and Vancomycin-Intermediate Methicillin-Resistant S. aureus Strains in an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model: Exploring the "Seesaw Effect― Antimicrobial Agents and Chemotherapy, 2013, 57, 2664-2668.	1.4	54
31	Ligand Promiscuity between the Efflux Pumps Human P-Glycoprotein and <i>S. aureus</i> NorA. ACS Medicinal Chemistry Letters, 2012, 3, 248-251.	1.3	20
32	Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus. International Journal of Antimicrobial Agents, 2012, 40, 204-209.	1.1	69
33	Pyrazolo[4,3- <i>c</i>][1,2]benzothiazines 5,5-Dioxide: A Promising New Class of Staphylococcus aureus NorA Efflux Pump Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 3568-3572.	2.9	82
34	Searching for innovative quinolone-like scaffolds: synthesis and biological evaluation of 2,1-benzothiazine 2,2-dioxide derivatives. MedChemComm, 2012, 3, 1092.	3.5	20
35	Mechanisms of in-vitro-selected daptomycin-non-susceptibility in Staphylococcus aureus. International Journal of Antimicrobial Agents, 2011, 38, 442-446.	1.1	49
36	Discovery of Novel Inhibitors of the NorA Multidrug Transporter of <i>Staphylococcus aureus</i> . Journal of Medicinal Chemistry, 2011, 54, 354-365.	2.9	67

#	Article	IF	CITATIONS
37	Evolution from a Natural Flavones Nucleus to Obtain 2-(4-Propoxyphenyl)quinoline Derivatives As Potent Inhibitors of the <i>S. aureus</i> NorA Efflux Pump. Journal of Medicinal Chemistry, 2011, 54, 5722-5736.	2.9	102
38	Goldenseal (<i>Hydrastis canadensis</i> L.) Extracts Synergistically Enhance the Antibacterial Activity of Berberine via Efflux Pump Inhibition. Planta Medica, 2011, 77, 835-840.	0.7	74
39	Characterizing Vancomycin-Resistant Enterococcus Strains with Various Mechanisms of Daptomycin Resistance Developed in an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2011, 55, 4748-4754.	1.4	21
40	From 6-Aminoquinolone Antibacterials to 6-Amino-7-thiopyranopyridinylquinolone Ethyl Esters as Inhibitors of <i>Staphylococcus aureus</i> Multidrug Efflux Pumps. Journal of Medicinal Chemistry, 2010, 53, 4466-4480.	2.9	41
41	Ethidium Bromide MIC Screening for Enhanced Efflux Pump Gene Expression or Efflux Activity in <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 5070-5073.	1.4	84
42	Evaluation of dalbavancin, tigecycline, minocycline, tetracycline, teicoplanin and vancomycin against community-associated and multidrug-resistant hospital-associated meticillin-resistant Staphylococcus aureus. International Journal of Antimicrobial Agents, 2010, 35, 25-29.	1.1	18
43	In silico genetic correlations of multidrug efflux pump gene expression in Staphylococcus aureus. International Journal of Antimicrobial Agents, 2010, 36, 222-229.	1.1	14
44	Treatment strategies for infective endocarditis. Expert Opinion on Pharmacotherapy, 2010, 11, 345-360.	0.9	13
45	Structural and biochemical characterization of MepR, a multidrug binding transcription regulator of the Staphylococcus aureus multidrug efflux pump MepA. Nucleic Acids Research, 2009, 37, 1211-1224.	6.5	52
46	Impact of Inoculum Size and Heterogeneous Vancomycin-Intermediate <i>Staphylococcus aureus</i> (hVISA) on Vancomycin Activity and Emergence of VISA in an In Vitro Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2009, 53, 805-807.	1.4	29
47	Inability of a reserpine-based screen to identify strains overexpressing efflux pump genes in clinical isolates of Staphylococcus aureus. International Journal of Antimicrobial Agents, 2009, 33, 360-363.	1.1	29
48	Fluoroquinolone Resistance in Bacteria. , 2009, , 195-205.		3
49	Synthesis and evaluation of fluoroquinolone derivatives as substrate-based inhibitors of bacterial efflux pumps. European Journal of Medicinal Chemistry, 2008, 43, 2453-2463.	2.6	66
50	Synthesis and evaluation of PSSRI-based inhibitors of Staphylococcus aureus multidrug efflux pumps. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1368-1373.	1.0	38
51	From Phenothiazine to 3-Phenyl-1,4-benzothiazine Derivatives as Inhibitors of the <i>Staphylococcus aureus</i> NorA Multidrug Efflux Pump. Journal of Medicinal Chemistry, 2008, 51, 4321-4330.	2.9	105
52	Inhibitors of Bacterial Multidrug Efflux Pumps from the Resin Glycosides of <i>Ipomoea murucoides</i> . Journal of Natural Products, 2008, 71, 1037-1045.	1.5	79
53	Daptomycin Activity against <i>Staphylococcus aureus</i> following Vancomycin Exposure in an In Vitro Pharmacodynamic Model with Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2008, 52, 831-836.	1.4	80
54	Multidrug efflux pump overexpression in Staphylococcus aureus after single and multiple in vitro exposures to biocides and dyes. Microbiology (United Kingdom), 2008, 154, 3144-3153.	0.7	107

#	Article	IF	CITATIONS
55	Synergy between gemifloxacin and trimethoprim/sulfamethoxazole against community-associated methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2008, 62, 1305-1310.	1.3	19
56	Teicoplanin pharmacodynamics in reference to the accessory gene regulator (agr) in Staphylococcus aureus using an in vitro pharmacodynamic model. Journal of Antimicrobial Chemotherapy, 2008, 61, 1099-1102.	1.3	9
57	Efflux-Related Resistance to Norfloxacin, Dyes, and Biocides in Bloodstream Isolates of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2007, 51, 3235-3239.	1.4	179
58	Fluoroquinolone Resistance in Streptococcus pneumoniae : Area Under the Concentration-Time Curve/MIC Ratio and Resistance Development with Gatifloxacin, Gemifloxacin, Levofloxacin, and Moxifloxacin. Antimicrobial Agents and Chemotherapy, 2007, 51, 1315-1320.	1.4	29
59	Correlation of vancomycin and daptomycin susceptibility in Staphylococcus aureus in reference to accessory gene regulator (agr) polymorphism and function. Journal of Antimicrobial Chemotherapy, 2007, 59, 1190-1193.	1.3	29
60	Evaluation of daptomycin treatment of Staphylococcus aureus bacterial endocarditis: an in vitro and in vivo simulation using historical and current dosing strategies. Journal of Antimicrobial Chemotherapy, 2007, 60, 334-340.	1.3	71
61	The Phenolic Diterpene Totarol Inhibits Multidrug Efflux Pump Activity in <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2007, 51, 4480-4483.	1.4	103
62	Community- and health care-associated methicillin-resistant Staphylococcus aureus: a comparison of molecular epidemiology and antimicrobial activities of various agents. Diagnostic Microbiology and Infectious Disease, 2007, 58, 41-47.	0.8	94
63	N-Caffeoylphenalkylamide derivatives as bacterial efflux pump inhibitors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1755-1758.	1.0	81
64	Antibacterials and modulators of bacterial resistance from the immature cones of Chamaecyparis lawsoniana. Phytochemistry, 2007, 68, 210-217.	1.4	121
65	Antimicrobial Susceptibility and Staphylococcal Chromosomal CassettemecType in Community- and Hospital-Associated Methicillin-ResistantStaphylococcus aureus. Pharmacotherapy, 2007, 27, 3-10.	1.2	29
66	Polyacylated Oligosaccharides from Medicinal Mexican Morning Glory Species as Antibacterials and Inhibitors of Multidrug Resistance inStaphylococcus aureus⊥. Journal of Natural Products, 2006, 69, 406-409.	1.5	99
67	Characteristics of Patients With Healthcare-Associated Infection Due to SCCmecType IV Methicillin-ResistantStaphylococcus aureus. Infection Control and Hospital Epidemiology, 2006, 27, 1025-1031.	1.0	100
68	Mechanisms of daptomycin resistance in Staphylococcus aureus. International Journal of Antimicrobial Agents, 2006, 28, 280-287.	1.1	75
69	MepR, a Repressor of the Staphylococcus aureus MATE Family Multidrug Efflux Pump MepA, Is a Substrate-Responsive Regulatory Protein. Antimicrobial Agents and Chemotherapy, 2006, 50, 1276-1281.	1.4	76
70	Multidrug Resistance in Staphylococcus aureus Due to Overexpression of a Novel Multidrug and Toxin Extrusion (MATE) Transport Protein. Antimicrobial Agents and Chemotherapy, 2005, 49, 1857-1864.	1.4	241
71	Clinical isolates of Staphylococcus aureus from 1987 and 1989 demonstrating heterogeneous resistance to vancomycin and teicoplanin. Diagnostic Microbiology and Infectious Disease, 2005, 51, 119-125.	0.8	19
72	Effect of Promoter Region Mutations and mgrA Overexpression on Transcription of norA , Which Encodes a Staphylococcus aureus Multidrug Efflux Transporter. Antimicrobial Agents and Chemotherapy, 2005, 49, 161-169.	1.4	79

#	Article	IF	CITATIONS
73	Bacterial efflux pump inhibition. Current Opinion in Investigational Drugs, 2005, 6, 191-8.	2.3	32
74	Catechin Gallates Inhibit Multidrug Resistance (MDR) inStaphylococcus aureus. Planta Medica, 2004, 70, 1240-1242.	0.7	97
75	Effect of substrate exposure and other growth condition manipulations on norA expression. Journal of Antimicrobial Chemotherapy, 2004, 54, 364-369.	1.3	20
76	Antibacterial and resistance modifying activity of. Phytochemistry, 2004, 65, 3249-3254.	1.4	309
77	Inhibitors of multidrug resistance (MDR) have affinity for MDR substrates. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 881-885.	1.0	41
78	Structural differences between paroxetine and femoxetine responsible for differential inhibition of Staphylococcus aureus efflux pumps. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3093-3097.	1.0	20
79	In vitro activities of mutant prevention concentration-targeted concentrations of fluoroquinolones against Staphylococcus aureus in a pharmacodynamic model. International Journal of Antimicrobial Agents, 2004, 24, 150-160.	1.1	42
80	Structural features of piperazinyl-linked ciprofloxacin dimers required for activity against drug-resistant strains of Staphylococcus aureus. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2109-2112.	1.0	78
81	Piperazinyl-linked fluoroquinolone dimers possessing potent antibacterial activity against drug-resistant strains of Staphylococcus aureus. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1745-1749.	1.0	51
82	Phenylpiperidine selective serotonin reuptake inhibitors interfere with multidrug efflux pump activity in Staphylococcus aureus. International Journal of Antimicrobial Agents, 2003, 22, 254-261.	1.1	79
83	Phenothiazines and Thioxanthenes Inhibit Multidrug Efflux Pump Activity in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2003, 47, 719-726.	1.4	184
84	A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2003, 51, 13-17.	1.3	186
85	Serum Bactericidal Activity of the Methoxyfluoroquinolones Gatifloxacin and Moxifloxacin against Clinical Isolates of Staphylococcus Species: Are the Susceptibility Breakpoints Too High?. Clinical Infectious Diseases, 2003, 37, 1392-1395.	2.9	7
86	Activities of Mutant Prevention Concentration-Targeted Moxifloxacin and Levofloxacin against Streptococcus pneumoniae in an In Vitro Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2003, 47, 2606-2614.	1.4	57
87	Identification and characterization of a novel efflux-related multidrug resistance phenotype in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2002, 50, 833-838.	1.3	56
88	Inhibition of bacterial efflux pumps: a new strategy to combat increasing antimicrobial agent resistance. Expert Opinion on Emerging Drugs, 2002, 7, 223-233.	1.0	28
89	Activities of Newer Fluoroquinolones against Ciprofloxacin-Resistant Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2001, 45, 1654-1659.	1.4	44
90	Oxazolidinones: new players in the battle against multi-resistant Gram-positive bacteria. Expert Opinion on Emerging Drugs, 2001, 6, 43-55.	1.1	6

#	Article	IF	CITATIONS
91	Evidence for the Existence of a Multidrug Efflux Transporter Distinct from NorA in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2000, 44, 1404-1406.	1.4	125
92	Comparison of a Rabbit Model of Bacterial Endocarditis and an In Vitro Infection Model with Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2000, 44, 1921-1924.	1.4	38
93	Introduction of a <i>norA</i> Promoter Region Mutation into the Chromosome of a Fluoroquinolone-Susceptible Strain of <i>Staphylococcus aureus</i> Using Plasmid Integration. Antimicrobial Agents and Chemotherapy, 1999, 43, 2222-2224.	1.4	30
94	Effects of NorA Inhibitors on In Vitro Antibacterial Activities and Postantibiotic Effects of Levofloxacin, Ciprofloxacin, and Norfloxacin in Genetically Related Strains of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 1999, 43, 335-340.	1.4	117
95	The effects of NorA inhibition on the activities of levofloxacin, ciprofloxacin and norfloxacin against two genetically related strains of Staphylococcus aureus in an in-vitro infection model. Journal of Antimicrobial Chemotherapy, 1999, 44, 343-349.	1.3	32
96	Topoisomerase Mutations in Fluoroquinolone-Resistant and Methicillin-Susceptible and -Resistant Clinical Isolates of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 1998, 42, 197-198.	1.4	16
97	Efficacy of LY333328 against Experimental Methicillin-Resistant <i>Staphylococcus aureus</i> Endocarditis. Antimicrobial Agents and Chemotherapy, 1998, 42, 981-983.	1.4	60
98	Comparative In Vitro Activities and Postantibiotic Effects of the Oxazolidinone Compounds Eperezolid (PNU-100592) and Linezolid (PNU-100766) versus Vancomycin against <i>Staphylococcus aureus</i> , Coagulase-Negative Staphylococci, <i>Enterococcus faecalis</i> , and <i>Enterococcus faecium</i> . Antimicrobial Agents and Chemotherapy, 1998, 42, 721-724.	1.4	132
99	Efficacy of Trovafloxacin against Experimental Staphylococcus aureus Endocarditis. Antimicrobial Agents and Chemotherapy, 1998, 42, 254-256.	1.4	21
100	Mechanisms of fluoroquinolone resistance in genetically related strains of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 1997, 41, 2733-2737.	1.4	137
101	The emergence of resistance to ciprofloxacin during treatment of experimental Staphylococcus aureus endocarditis. Journal of Antimicrobial Chemotherapy, 1987, 20, 753-758.	1.3	83