Jing Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10389091/publications.pdf

Version: 2024-02-01

1039406 1473754 1,595 9 9 9 citations h-index g-index papers 9 9 9 2927 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	YAP/TAZ drives cell proliferation and tumour growth via a polyamine–eIF5A hypusination–LSD1 axis. Nature Cell Biology, 2022, 24, 373-383.	4.6	26
2	WWTR1(TAZ)-CAMTA1 reprograms endothelial cells to drive epithelioid hemangioendothelioma. Genes and Development, 2021, 35, 495-511.	2.7	27
3	A RhoA–YAP–c-Myc signaling axis promotes the development of polycystic kidney disease. Genes and Development, 2018, 32, 781-793.	2.7	94
4	β-Catenin destruction complex-independent regulation of Hippo–YAP signaling by APC in intestinal tumorigenesis. Genes and Development, 2015, 29, 1493-1506.	2.7	155
5	Homeostatic control of Hippo signaling activity revealed by an endogenous activating mutation in YAP. Genes and Development, 2015, 29, 1285-1297.	2.7	125
6	Msx2 and Foxn1 regulate nail homeostasis. Genesis, 2011, 49, 449-459.	0.8	16
7	The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes and Development, 2010, 24, 2383-2388.	2.7	426
8	The Merlin/NF2 Tumor Suppressor Functions through the YAP Oncoprotein to Regulate Tissue Homeostasis in Mammals. Developmental Cell, 2010, 19, 27-38.	3.1	663
9	Genetic interplays between Msx2 and Foxn1 are required for Notch1 expression and hair shaft differentiation. Developmental Biology, 2009, 326, 420-430.	0.9	63