Patrick De Leenheer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10388408/publications.pdf

Version: 2024-02-01

394286 414303 38 1,502 19 32 citations g-index h-index papers 38 38 38 1214 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The ideal free distribution and the evolution of partial migration. Journal of Difference Equations and Applications, 2021, 27, 462-477.	0.7	1
2	Global analysis of a predator–prey model with variable predator search rate. Journal of Mathematical Biology, 2020, 81, 159-183.	0.8	12
3	Dispersal kernels may be scalable: Implications from a plant pathogen. Journal of Biogeography, 2019, 46, 2042-2055.	1.4	3
4	Division of labor in bacterial populations. Mathematical Biosciences, 2019, 316, 108257.	0.9	11
5	Strong cooperation or tragedy of the commons in the chemostat. Mathematical Biosciences and Engineering, 2019, 16, 139-149.	1.0	4
6	The puzzle of partial migration: Adaptive dynamics and evolutionary game theory perspectives. Journal of Theoretical Biology, 2017, 412, 172-185.	0.8	14
7	Tragedy of the commons in the chemostat. PLoS ONE, 2017, 12, e0186119.	1.1	16
8	Parasite sources and sinks in a patched Ross–Macdonald malaria model with human and mosquito movement: Implications for control. Mathematical Biosciences, 2016, 279, 90-101.	0.9	33
9	The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nature Microbiology, 2016, 1, 16065.	5.9	110
10	Output Diffusion of the Monopolist Over Time and Space. Journal of Optimization Theory and Applications, 2016, 169, 290-298.	0.8	0
11	The effectiveness of marine protected areas for predator and prey with varying mobility. Theoretical Population Biology, 2016, 110, 63-77.	0.5	11
12	Population models with partial migration. Journal of Difference Equations and Applications, 2016, 22, 316-329.	0.7	3
13	Optimal Placement of Marine Protected Areas: a Trade-off Between Fisheries Goals and Conservation Efforts. IEEE Transactions on Automatic Control, 2014, 59, 1583-1587.	3.6	3
14	Traveling waves in response to a diffusing quorum sensing signal in spatially-extended bacterial colonies. Journal of Theoretical Biology, 2014, 363, 53-61.	0.8	31
15	Global analysis of within host virus models with cell-to-cell viral transmission. Discrete and Continuous Dynamical Systems - Series B, 2014, 19, 3341-3357.	0.5	43
16	Quorum Activation at a Distance: Spatiotemporal Patterns of Gene Regulation from Diffusion of an Autoinducer Signal. Journal of the American Chemical Society, 2012, 134, 5618-5626.	6.6	68
17	Persistence Results for Chemical Reaction Networks with Time-Dependent Kinetics and No Global Conservation Laws. SIAM Journal on Applied Mathematics, 2011, 71, 128-146.	0.8	45
18	Senescence and antibiotic resistance in an age-structured population model. Journal of Mathematical Biology, 2010, 61, 475-499.	0.8	8

#	Article	IF	CITATIONS
19	Graph-theoretic characterizations of monotonicity of chemical networks in reaction coordinates. Journal of Mathematical Biology, 2010, 61, 581-616.	0.8	62
20	The chemostat with lateral gene transfer. Journal of Biological Dynamics, 2010, 4, 607-620.	0.8	7
21	On persistence of chemical reaction networks with time-dependent kinetics and no global conservation laws. , 2009, , .		1
22	Chemical networks with inflows and outflows: A positive linear differential inclusions approach. Biotechnology Progress, 2009, 25, 632-642.	1.3	36
23	Within-Host Virus Models with Periodic Antiviral Therapy. Bulletin of Mathematical Biology, 2009, 71, 189-210.	0.9	21
24	Failure of antibiotic treatment in microbial populations. Journal of Mathematical Biology, 2009, 59, 563-579.	0.8	41
25	Multistrain virus dynamics with mutations: a global analysis. Mathematical Medicine and Biology, 2008, 25, 285-322.	0.8	33
26	Immune response to a malaria infection: properties of a mathematical model. Journal of Biological Dynamics, 2008, 2, 102-120.	0.8	19
27	Global stability for monotone tridiagonal systems with negative feedback. , 2008, , .		3
28	A Petri net approach to the study of persistence in chemical reaction networks. Mathematical Biosciences, 2007, 210, 598-618.	0.9	154
29	Monotone Chemical Reaction Networks. Journal of Mathematical Chemistry, 2007, 41, 295-314.	0.7	97
30	A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks. Lecture Notes in Control and Information Sciences, 2007, , 181-216.	0.6	23
31	Crowding effects promote coexistence in the chemostat. Journal of Mathematical Analysis and Applications, 2006, 319, 48-60.	0.5	26
32	Global stability in a chemostat with multiple nutrients. Journal of Mathematical Biology, 2006, 52, 419-438.	0.8	16
33	Stabilizing a Periodic Solution in the Chemostat: A Case Study in Tracking. , 2006, , .		7
34	On the structural monotonicity of chemical reaction networks. , 2006, , .		20
35	Feedback-Mediated Oscillatory Coexistence in the Chemostat. Lecture Notes in Control and Information Sciences, 2006, , 97-104.	0.6	6
36	On Predator-Prey Systems and Small-Gain Theorems. Mathematical Biosciences and Engineering, 2005, 2, 25-42.	1.0	32

#	Article	IF	CITATIONS
37	Feedback control for chemostat models. Journal of Mathematical Biology, 2003, 46, 48-70.	0.8	121
38	Virus Dynamics: A Global Analysis. SIAM Journal on Applied Mathematics, 2003, 63, 1313-1327.	0.8	361