M Isabel Matheu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/103866/publications.pdf

Version: 2024-02-01

48 papers

1,271 citations

331670 21 h-index 34 g-index

56 all docs

56
docs citations

56 times ranked 1279 citing authors

#	Article	IF	CITATIONS
1	Revealing 2-dimethylhydrazino-2-alkyl alkynyl sphingosine derivatives as sphingosine kinase 2 inhibitors: Some hints on the structural basis for selective inhibition. Bioorganic Chemistry, 2022, 121, 105668.	4.1	2
2	Probing Siteâ€Selective Conjugation Chemistries for the Construction of Homogeneous Synthetic Glycodendriproteins. ChemBioChem, 2022, , e202200020.	2.6	1
3	Enantioselective Synthesis of 3â€Heterosubstitutedâ€2â€aminoâ€1â€ols by Sequential Metalâ€Free Diene Aziridination/Kinetic Resolution. Chemistry - A European Journal, 2019, 25, 12628-12635.	3.3	4
4	Enantioselective Synthesis of Aminodiols by Sequential Rhodium atalysed Oxyamination/Kinetic Resolution: Expanding the Substrate Scope of Amidineâ€Based Catalysis. Chemistry - A European Journal, 2018, 24, 4635-4642.	3.3	15
5	Fluorinated triazole-containing sphingosine analogues. Syntheses andin vitroevaluation as SPHK inhibitors. Organic and Biomolecular Chemistry, 2018, 16, 7230-7235.	2.8	7
6	Highly reactive 2-deoxy-2-iodo- $<$ scp> $d<$ scp>- $d<$ scp>- $d<$ scp> $d<$ scp>-	3.6	5
7	Chemical Access to <scp>d</scp> -Sarmentose Units Enables the Total Synthesis of Cardenolide Monoglycoside N-1 from <i>Nerium oleander</i>). Journal of Organic Chemistry, 2017, 82, 3327-3333.	3.2	9
8	Metal-free and VOC-free O-glycosylation in supercritical CO ₂ . Green Chemistry, 2017, 19, 2687-2694.	9.0	19
9	Palladium-catalyzed allylic amination: a powerful tool for the enantioselective synthesis of acyclic nucleoside phosphonates. Organic and Biomolecular Chemistry, 2017, 15, 7227-7234.	2.8	9
10	Substrateâ€Regiocontrolled Synthesis of Enantioenriched Allylic Amines by Palladiumâ€Catalysed Asymmetric Allylic Amination: Formal Synthesis of Fagomine. Advanced Synthesis and Catalysis, 2016, 358, 4057-4066.	4.3	8
11	Enantioselective Formal Synthesis of Nectrisine Using a Palladium-Catalyzed Asymmetric Allylic Amination and Cross-Metathesis as Key Steps. Journal of Organic Chemistry, 2016, 81, 5217-5221.	3.2	5
12	Synthesis of a <i>P</i> â€6tereogenic PNP ^{<i>t</i>Bu,Ph} Ruthenium Pincer Complex and Its Application in Asymmetric Reduction of Ketones. European Journal of Organic Chemistry, 2015, 2015, 3666-3669.	2.4	22
13	Rhodium-catalyzed regio- and stereoselective oxyamination of dienes via tandem aziridination/ring-opening of dienyl carbamates. Chemical Communications, 2014, 50, 7344-7347.	4.1	31
14	Ruthenium-catalyzed cross-metathesis with electron-rich phenyl vinyl sulfide enables access to 2,3-dideoxy-d-ribopyranose ring system donors. RSC Advances, 2014, 4, 19794-19799.	3.6	9
15	Tuning the Stereoelectronic Properties of 1-Sulfanylhex-1-enitols for the Sequential Stereoselective Synthesis of 2-Deoxy-2-iodo- \hat{l}^2 -d-allopyranosides. Journal of Organic Chemistry, 2014, 79, 3060-3068.	3.2	12
16	Chemo-, Regio-, and Stereoselective Silver-Catalyzed Aziridination of Dienes: Scope, Mechanistic Studies, and Ring-Opening Reactions. Journal of the American Chemical Society, 2014, 136, 5342-5350.	13.7	89
17	Advances in the enantioselective synthesis of carbocyclic nucleosides. Chemical Society Reviews, 2013, 42, 5056.	38.1	95
18	Phosphine-Free Suzuki–Miyaura Cross-Coupling in Aqueous Media Enables Access to 2- <i>C</i> /i>-Aryl-Glycosides. Organic Letters, 2012, 14, 1728-1731.	4.6	61

#	Article	IF	Citations
19	Efficient and regioselective ring-opening of arylaziridines with alcohols, thiols, amines and N-heteroaromatic compounds using sulphated zirconia. Tetrahedron Letters, 2012, 53, 2525-2529.	1.4	15
20	Sequential Directed Epoxydation-Acidolysis from Glycals with MCPBA. A Flexible Approach to Protected Glycosyl Donors. Journal of Organic Chemistry, 2011, 76, 9622-9629.	3.2	7
21	Enantioselective Synthesis of Jaspine B (Pachastrissamine) and Its Câ€2 and/or Câ€3 Epimers. European Journal of Organic Chemistry, 2011, 2011, 1514-1519.	2.4	34
22	Synthesis of Hyperbranched βâ€Galceramideâ€Containing Dendritic Polymers that Bind HIVâ€1 rgp120. European Journal of Organic Chemistry, 2010, 2010, 2657-2660.	2.4	15
23	Stereoselective Tandem Epoxidation–Alcoholysis/Hydrolysis of Glycals with Molybdenum Catalysts. Advanced Synthesis and Catalysis, 2010, 352, 3407-3418.	4.3	14
24	Efficient Silver atalyzed Regio―and Stereospecific Aziridination of Dienes. Angewandte Chemie - International Edition, 2010, 49, 7092-7095.	13.8	86
25	Studies on the Zn(II)-mediated electrophilic selenocyclization and elimination of 3,4-O-isopropylidene-protected hydroxyalkenyl sulfides: synthesis of a 2-phenylselenenyl glycal. Carbohydrate Research, 2010, 345, 1041-1045.	2.3	7
26	Recent Advances in the Synthesis of Sphingosine and Phytosphingosine, Molecules of Biological Significance. Current Organic Chemistry, 2010, 14, 2483-2521.	1.6	47
27	Short and General Procedure for Synthesizing Cis-1,2-Fused 1,3-Oxathiolan-, 1,3-Oxaselenolan-, and 1,3-Oxazolidin-2-imine Carbohydrate Derivatives. Journal of Organic Chemistry, 2010, 75, 514-517.	3.2	17
28	Efficient Synthesis of βâ€Glycosphingolipids by Reaction of Stannylceramides with Glycosyl Iodides Promoted by TBAI/AW 300 Molecular Sieves. European Journal of Organic Chemistry, 2009, 2009, 3849-3852.	2.4	16
29	Designing an effective approach for obtaining methylenecarboxylate analogues of adenophostin A. Preliminary results. Carbohydrate Research, 2009, 344, 2559-2567.	2.3	5
30	An Efficient and General Enantioselective Synthesis of Sphingosine, Phythosphingosine, and 4-Substituted Derivatives. Organic Letters, 2009, 11, 205-208.	4.6	64
31	Direct and Efficient Glycosylation Protocol for Synthesizing αâ€Glycolipids: Application to the Synthesis of KRN7000. European Journal of Organic Chemistry, 2008, 2008, 1851-1854.	2.4	19
32	Towards the preparation of 2″-deoxy-2″-fluoro-adenophostin A. Study of the glycosylation reaction. Tetrahedron, 2008, 64, 10906-10911.	1.9	13
33	Asymmetric sulfur ylide based enantioselective synthesis of D-erythro-sphingosine. Organic and Biomolecular Chemistry, 2008, 6, 4502.	2.8	35
34	Stannyl ceramides as efficient acceptors for synthesising \hat{l}^2 -galactosyl ceramides. Organic and Biomolecular Chemistry, 2008, 6, 3831.	2.8	9
35	Highly efficient and stereoselective synthesis of \hat{l}^2 -glycolipids. Organic and Biomolecular Chemistry, 2008, 6, 443-446.	2.8	24
36	Synthesis of <scp>d</scp> - and <scp>l</scp> -Carbocyclic Nucleosides via Rhodium-Catalyzed Asymmetric Hydroacylation as the Key Step. Organic Letters, 2008, 10, 4735-4738.	4.6	54

3

#	Article	IF	CITATION
37	Synthesis of 2-lodoglycals, Glycals, and $1,1\hat{a}\in$ -Disaccharides from 2-Deoxy-2-iodopyranoses under Dehydrative Glycosylation Conditions. Journal of Organic Chemistry, 2007, 72, 8998-9001.	3.2	31
38	Stereoselective Synthesis of 2-Deoxyglycosides from Sulfanyl Alkenes by Consecutive "One Pot― Cyclization and Glycosylation Reactions. European Journal of Organic Chemistry, 2007, 2007, 2007, 2470-2476.	2.4	16
39	Stereoselective Synthesis of 2-Deoxy-2-phenylselenenyl Glycosides from Furanoses: Implication of the Phenylselenenyl Group in the Stereocontrolled Preparation of 2-Deoxy-ribo- and 2-Deoxy-xylo-oligosaccharides. European Journal of Organic Chemistry, 2007, 2007, 3564-3572.	2.4	21
40	Recent advances in the glycosylation of sphingosines and ceramides. Carbohydrate Research, 2007, 342, 1595-1612.	2.3	57
41	Synthesis of carbohydrate-based vinyl selenides via Wittig-type reactions. Carbohydrate Research, 2007, 342, 736-743.	2.3	8
42	General Method for Synthesizing Pyranoid Glycals. A New Route to Allal and Gulal Derivatives. Organic Letters, 2006, 8, 673-675.	4.6	29
43	Stereoselective Synthesis of 2-Deoxy-2-iodo-glycosides from Furanoses. A New Route to 2-Deoxy-glycosides and 2-Deoxy-oligosaccharides ofriboandxyloConfiguration. Journal of Organic Chemistry, 2005, 70, 10297-10310.	3.2	31
44	Synthesis of 2-deoxy-3,5-di-O-benzoyl-2,2-difluoro-D-ribose from D-glucose and D-mannose. A formal synthesis of gemcitabine. Tetrahedron, 1998, 54, 3523-3532.	1.9	33
45	An Improved Synthesis of 4-O-Benzoyl-2,2-difluorooleandrose froml-Rhamnose. Factors Determining the Synthesis of 2,2-Difluorocarbohydrates from 2-Uloses. Journal of Organic Chemistry, 1998, 63, 2184-2188.	3.2	25
46	Stereoselective Synthesis of 2â€~,3â€~-Dideoxynucleosides by Addition of Selenium Electrophiles to Glycals. A Formal Synthesis of D4T from 2-Deoxyribose. Journal of Organic Chemistry, 1997, 62, 1501-1505.	3.2	44
47	A new and extremely fast synthesis of 2-deoxy-2,2-difluoro-d-arabino-hexose (2-deoxy-2,2-difluoro-d-glucose). Carbohydrate Research, 1992, 233, C1-C3.	2.3	10
48	gem-Difluorination versus 1,2-migration and fragmentation in the reaction of 2- and 3-uloses with DAST. Influence of stereochemistry at the anomeric carbon atom. Journal of Organic Chemistry, 1991, 56, 4556-4559.	3.2	44