
Quentin J Sattentau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1038557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nature Cell Biology, 2008, 10, 211-219.	4.6	666
2	HIV-1 Cell to Cell Transfer across an Env-induced, Actin-dependent Synapse. Journal of Experimental Medicine, 2004, 199, 283-293.	4.2	555
3	Avoiding the void: cell-to-cell spread of human viruses. Nature Reviews Microbiology, 2008, 6, 815-826.	13.6	541
4	Analysis of Memory B Cell Responses and Isolation of Novel Monoclonal Antibodies with Neutralizing Breadth from HIV-1-Infected Individuals. PLoS ONE, 2010, 5, e8805.	1.1	405
5	Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell, 2015, 161, 1280-1292.	13.5	305
6	Selective Interactions of Polyanions with Basic Surfaces on Human Immunodeficiency Virus Type 1 gp120. Journal of Virology, 2000, 74, 1948-1960.	1.5	285
7	Human Immunodeficiency Virus Type 1 Attachment to HeLa CD4 Cells Is CD4 Independent and gp120 Dependent and Requires Cell Surface Heparans. Journal of Virology, 1998, 72, 3623-3634.	1.5	279
8	CD4-Induced Conformational Changes in the Human Immunodeficiency Virus Type 1 gp120 Glycoprotein: Consequences for Virus Entry and Neutralization. Journal of Virology, 1998, 72, 4694-4703.	1.5	278
9	V3: HIV's Switch-Hitter. AIDS Research and Human Retroviruses, 2005, 21, 171-189.	0.5	260
10	Oligomeric Modeling and Electrostatic Analysis of the gp120 Envelope Glycoprotein of Human Immunodeficiency Virus. Journal of Virology, 2000, 74, 1961-1972.	1.5	248
11	HIV-1 attachment: another look. Trends in Microbiology, 1999, 7, 144-149.	3.5	223
12	Cryo-Electron Tomographic Structure of an Immunodeficiency Virus Envelope Complex In Situ. PLoS Pathogens, 2006, 2, e83.	2.1	205
13	Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses. Blood, 2008, 111, 4660-4663.	0.6	204
14	Retroviral Spread by Induction of Virological Synapses. Traffic, 2004, 5, 643-650.	1.3	201
15	Dangerous liaisons at the virological synapse. Journal of Clinical Investigation, 2004, 114, 605-610.	3.9	199
16	Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens. Nature Biotechnology, 2012, 30, 883-888.	9.4	189
17	A potential molecular mechanism for hypersensitivity caused by formalin-inactivated vaccines. Nature Medicine, 2006, 12, 905-907.	15.2	187
18	Neutralization of Human Immunodeficiency Virus Type 1 by Antibody to gp120 Is Determined Primarily by Occupancy of Sites on the Virion Irrespective of Epitope Specificity. Journal of Virology, 1998, 72, 3512-3519.	1.5	182

#	Article	IF	CITATIONS
19	Requirement for an Intact T-Cell Actin and Tubulin Cytoskeleton for Efficient Assembly and Spread of Human Immunodeficiency Virus Type 1. Journal of Virology, 2007, 81, 5547-5560.	1.5	177
20	Virological Synapse-Mediated Spread of Human Immunodeficiency Virus Type 1 between T Cells Is Sensitive to Entry Inhibition. Journal of Virology, 2010, 84, 3516-3527.	1.5	177
21	Neutralization of Infectivity of Diverse R5 Clinical Isolates of Human Immunodeficiency Virus Type 1 by gp120-Binding 2′F-RNA Aptamers. Journal of Virology, 2003, 77, 12692-12698.	1.5	167
22	Human Immunodeficiency Virus Type 1 Assembly, Budding, and Cell-Cell Spread in T Cells Take Place in Tetraspanin-Enriched Plasma Membrane Domains. Journal of Virology, 2007, 81, 7873-7884.	1.5	167
23	Adhesion Molecule Interactions Facilitate Human Immunodeficiency Virus Type 1-Induced Virological Synapse Formation between T Cells. Journal of Virology, 2007, 81, 13916-13921.	1.5	154
24	The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. ELife, 2016, 5, e12444.	2.8	153
25	HIV-1 antibody — debris or virion?. Nature Medicine, 1997, 3, 366-367.	15.2	147
26	Macrophage Infection via Selective Capture of HIV-1-Infected CD4+ T Cells. Cell Host and Microbe, 2014, 16, 711-721.	5.1	143
27	Macrophages and HIV-1: An Unhealthy Constellation. Cell Host and Microbe, 2016, 19, 304-310.	5.1	140
28	RNA Helicase DDX1 Converts RNA G-Quadruplex Structures into R-Loops to Promote IgH Class Switch Recombination. Molecular Cell, 2018, 70, 650-662.e8.	4.5	133
29	Human Immunodeficiency Virus Type 1 Virological Synapse Formation in T Cells Requires Lipid Raft Integrity. Journal of Virology, 2005, 79, 12088-12094.	1.5	125
30	Inhibition of Virus Attachment to CD4+ Target Cells Is a Major Mechanism of T Cell Line–adapted HIV-1 Neutralization. Journal of Experimental Medicine, 1997, 186, 1287-1298.	4.2	124
31	Cyanovirin-N Binds to gp120 To Interfere with CD4-Dependent Human Immunodeficiency Virus Type 1 Virion Binding, Fusion, and Infectivity but Does Not Affect the CD4 Binding Site on gp120 or Soluble CD4-Induced Conformational Changes in gp120. Journal of Virology, 1999, 73, 4360-4371.	1.5	122
32	Cell-to-cell HIV-1 spread and its implications for immune evasion. Current Opinion in HIV and AIDS, 2009, 4, 143-149.	1.5	121
33	HIV infection of primate lymphocytes and conservation of the CD4 receptor. Nature, 1987, 330, 487-489.	13.7	116
34	Anti-HIV IgA isotypes. Aids, 2013, 27, F13-F20.	1.0	114
35	Cell-to-Cell Spread of Retroviruses. Viruses, 2010, 2, 1306-1321.	1.5	112
36	Heparan Sulfate Targets the HIV-1 Envelope Glycoprotein gp120 Coreceptor Binding Site. Journal of Biological Chemistry, 2005, 280, 21353-21357.	1.6	108

#	Article	IF	CITATIONS
37	High-Multiplicity HIV-1 Infection and Neutralizing Antibody Evasion Mediated by the Macrophage-T Cell Virological Synapse. Journal of Virology, 2014, 88, 2025-2034.	1.5	98
38	Human T-Cell Leukemia Virus Type 1 Envelope Glycoprotein gp46 Interacts with Cell Surface Heparan Sulfate Proteoglycans. Journal of Virology, 2003, 77, 9922-9930.	1.5	93
39	The HIV-1-containing macrophage compartment: a perfect cellular niche?. Trends in Microbiology, 2013, 21, 405-412.	3.5	82
40	Interactions among HIV gp120, CD4, and CXCR4: Dependence on CD4 Expression Level, gp120 Viral Origin, Conservation of the gp120 COOH- and NH2-Termini and V1/V2 and V3 Loops, and Sensitivity to Neutralizing Antibodies. Virology, 1998, 248, 394-405.	1.1	75
41	Astrocytes Resist HIV-1 Fusion but Engulf Infected Macrophage Material. Cell Reports, 2017, 18, 1473-1483.	2.9	73
42	Cell-to-cell spread of HIV-1 and evasion of neutralizing antibodies. Vaccine, 2013, 31, 5789-5797.	1.7	71
43	The direct passage of animal viruses between cells. Current Opinion in Virology, 2011, 1, 396-402.	2.6	68
44	Expression-System-Dependent Modulation of HIV-1 Envelope Glycoprotein Antigenicity and Immunogenicity. Journal of Molecular Biology, 2010, 403, 131-147.	2.0	67
45	The Regulated Secretory Pathway in CD4+ T cells Contributes to Human Immunodeficiency Virus Type-1 Cell-to-Cell Spread at the Virological Synapse. PLoS Pathogens, 2011, 7, e1002226.	2.1	65
46	High multiplicity HIV-1 cell-to-cell transmission from macrophages to CD4+ T cells limits antiretroviral efficacy. Aids, 2013, 27, 2201-2206.	1.0	65
47	Development of prophylactic vaccines against HIV-1. Retrovirology, 2013, 10, 72.	0.9	64
48	International Network for Comparison of HIV Neutralization Assays: The NeutNet Report II. PLoS ONE, 2012, 7, e36438.	1.1	63
49	Defense-in-depth by mucosally administered anti-HIV dimeric IgA2 and systemic IgG1 mAbs: Complete protection of rhesus monkeys from mucosal SHIV challenge. Vaccine, 2015, 33, 2086-2095.	1.7	63
50	Polyethyleneimine is a potent systemic adjuvant for glycoprotein antigens. International Immunology, 2014, 26, 531-538.	1.8	61
51	Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancestor of CH235 lineage CD4bs broadly neutralizing antibodies. PLoS Pathogens, 2019, 15, e1008026.	2.1	56
52	EV01: A phase I trial in healthy HIV negative volunteers to evaluate a clade C HIV vaccine, NYVAC-C undertaken by the EuroVacc Consortium. Vaccine, 2008, 26, 3153-3161.	1.7	54
53	Reactive Carbonyls Are a Major Th2-Inducing Damage-Associated Molecular Pattern Generated by Oxidative Stress. Journal of Immunology, 2011, 187, 1626-1633.	0.4	53
54	Viral Determinants of HIV-1 Macrophage Tropism. Viruses, 2011, 3, 2255-2279.	1.5	53

#	Article	IF	CITATIONS
55	Architecture and Regulation of the HIV-1 Assembly and Holding Compartment in Macrophages. Journal of Virology, 2011, 85, 7922-7927.	1.5	47
56	Improved HIV-1 specific T-cell responses by short-interval DNA tattooing as compared to intramuscular immunization in non-human primates. Vaccine, 2008, 26, 3346-3351.	1.7	45
57	Multiple proviral integration events after virological synapse-mediated HIV-1 spread. Virology, 2013, 443, 143-149.	1.1	45
58	Journal of AIDS & Clinical Research. Journal of AIDS & Clinical Research, 2012, S8, 3.	0.5	45
59	Mixed Adjuvant Formulations Reveal a New Combination That Elicit Antibody Response Comparable to Freund's Adjuvants. PLoS ONE, 2012, 7, e35083.	1.1	44
60	Elimination of Retroviral Infectivity by N -Ethylmaleimide with Preservation of Functional Envelope Glycoproteins. Journal of Virology, 2005, 79, 1533-1542.	1.5	43
61	Stabilized HIV-1 envelope glycoprotein trimers for vaccine use. Current Opinion in HIV and AIDS, 2017, 12, 241-249.	1.5	43
62	Dry roasting enhances peanut-induced allergic sensitization across mucosal and cutaneous routes in mice. Journal of Allergy and Clinical Immunology, 2014, 134, 1453-1456.	1.5	41
63	Carnauba wax nanoparticles enhance strong systemic and mucosal cellular and humoral immune responses to HIV-gp140 antigen. Vaccine, 2011, 29, 1258-1269.	1.7	37
64	The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice. Vaccine Journal, 2015, 22, 1004-1012.	3.2	37
65	Efferocytosis of Pathogen-Infected Cells. Frontiers in Immunology, 2017, 8, 1863.	2.2	37
66	Disassembly of HIV envelope glycoprotein trimer immunogens is driven by antibodies elicited via immunization. Science Advances, 2021, 7, .	4.7	37
67	HIV-1 envelope glycan modifications that permit neutralization by germline-reverted VRC01-class broadly neutralizing antibodies. PLoS Pathogens, 2018, 14, e1007431.	2.1	36
68	Regulated secretion from CD4+ T cells. Trends in Immunology, 2007, 28, 474-481.	2.9	34
69	Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens. Journal of Virology, 2016, 90, 813-828.	1.5	34
70	HIV gp120: double lock strategy foils host defences. Structure, 1998, 6, 945-949.	1.6	33
71	Synergistic inhibition of HIV-1 infection by combinations of soluble polyanions with other potential microbicides. Antiviral Research, 2007, 75, 188-197.	1.9	33
72	Potent adaptive immune responses induced against HIV-1 gp140 and influenza virus HA by a polyanionic carbomer. Vaccine, 2010, 28, 2482-2489.	1.7	33

#	Article	IF	CITATIONS
73	Vaccine-Associated Enhanced Disease and Pathogenic Human Coronaviruses. Frontiers in Immunology, 2022, 13, 882972.	2.2	32
74	Antibody neutralization of HIV-1 and the potential for vaccine design. Immunology Letters, 1999, 66, 143-149.	1.1	31
75	Interfacial metal and antibody recognition. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14575-14580.	3.3	29
76	Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins. PLoS Pathogens, 2018, 14, e1006986.	2.1	28
77	SDF-1/CXCL12 Production by Mature Dendritic Cells Inhibits the Propagation of X4-Tropic HIV-1 Isolates at the Dendritic Cell-T-Cell Infectious Synapse. Journal of Virology, 2010, 84, 4341-4351.	1.5	25
78	Pathogen-sugar interactions revealed by universal saturation transfer analysis. Science, 2022, 377, .	6.0	24
79	Immunological and pathological outcomes of SARS-CoV-2 challenge following formalin-inactivated vaccine in ferrets and rhesus macaques. Science Advances, 2021, 7, eabg7996.	4.7	20
80	New templates for HIV-1 antibody-based vaccine design. F1000 Biology Reports, 2010, 2, 60.	4.0	20
81	Human monoclonal antibodies to HIV-1 gp140 from mice bearing YAC-based human immunoglobulin transloci. Protein Engineering, Design and Selection, 2011, 24, 791-799.	1.0	18
82	Sterile inflammation induced by Carbopol elicits robust adaptive immune responses in the absence of pathogen-associated molecular patterns. Vaccine, 2016, 34, 2188-2196.	1.7	18
83	HIV-1-neutralizing antibody induced by simian adenovirus- and poxvirus MVA-vectored BG505 native-like envelope trimers. PLoS ONE, 2017, 12, e0181886.	1.1	16
84	Envelope Glycoprotein Trimers as HIV-1 Vaccine Immunogens. Vaccines, 2013, 1, 497-512.	2.1	15
85	Candidate Polyanionic Microbicides Inhibit Human T-Cell Lymphotropic Virus Type 1 Receptor Interactions, Cell-Free Infection, and Cell-Cell Spread. Antimicrobial Agents and Chemotherapy, 2009, 53, 678-687.	1.4	14
86	Human MAIT cells respond to and suppress HIV-1. ELife, 2021, 10, .	2.8	14
87	Immunogen design to focus the B-cell repertoire. Current Opinion in HIV and AIDS, 2014, 9, 217-223.	1.5	13
88	High thermostability improves neutralizing antibody responses induced by native-like HIV-1 envelope trimers. Npj Vaccines, 2022, 7, 27.	2.9	13
89	Correlates of antibody-mediated protection against HIV infection. Current Opinion in HIV and AIDS, 2008, 3, 368-374.	1.5	12
90	A Novel Strategy for Inducing Enhanced Mucosal HIV-1 Antibody Responses in an Anti-Inflammatory Environment. PLoS ONE, 2011, 6, e15861.	1.1	11

#	Article	IF	CITATIONS
91	Stepwise Conformational Stabilization of a HIV-1 Clade C Consensus Envelope Trimer Immunogen Impacts the Profile of Vaccine-Induced Antibody Responses. Vaccines, 2021, 9, 750.	2.1	11
92	Comparison of Neutralizing Antibody Responses Elicited from Highly Diverse Polyvalent Heterotrimeric HIV-1 gp140 Cocktail Immunogens versus a Monovalent Counterpart in Rhesus Macaques. PLoS ONE, 2014, 9, e114709.	1.1	11
93	A sweet cleft in HIV's armour. Nature, 2011, 480, 324-325.	13.7	9
94	Nasal Immunization Confers High Avidity Neutralizing Antibody Response and Immunity to Primary and Recurrent Genital Herpes in Guinea Pigs. Frontiers in Immunology, 2016, 7, 640.	2.2	9
95	Augmenting the Immune Response against a Stabilized HIV-1 Clade C Envelope Trimer by Silica Nanoparticle Delivery. Vaccines, 2021, 9, 642.	2.1	9
96	HIV's gut feeling. Nature Immunology, 2008, 9, 225-227.	7.0	8
97	Interplay of diverse adjuvants and nanoparticle presentation of native-like HIV-1 envelope trimers. Npj Vaccines, 2021, 6, 103.	2.9	8
98	The prospects for vaccines against HIV-1: more than a field of long-term nonprogression?. Expert Reviews in Molecular Medicine, 2005, 7, 1-21.	1.6	7
99	European Union and EDCTP strategy in the global context: Recommendations for preventive HIV/AIDS vaccines research. Vaccine, 2005, 23, 5551-5556.	1.7	7
100	A functional human IgM response to HIV-1 Env after immunization with NYVAC HIV C. Aids, 2007, 21, 524-527.	1.0	7
101	Glycans in HIV-1 vaccine design – engaging the shield. Trends in Microbiology, 2022, 30, 866-881.	3.5	7
102	Fundamental Immunology and What it Can Teach us About HIV Vaccine Development. Current Drug Targets Infectious Disorders, 2005, 5, 87-93.	2.1	5
103	Production and Characterization of High-Affinity Human Monoclonal Antibodies to Human Immunodeficiency Virus Type 1 Envelope Glycoproteins in a Mouse Model Expressing Human Immunoglobulins. Vaccine Journal, 2007, 14, 157-167.	3.2	5
104	A Plea for Justice for Jailed Medical Workers. Science, 2006, 314, 924-925.	6.0	3
105	Re: "Enhancement of HIV Infection by Cellulose Sulfate,―by Tao et al AIDS Research and Human Retroviruses, 2009, 25, 373-373.	0.5	1
106	Retroviruses and the Third Synapse. Viruses, 2010, 2, 1008-1010.	1.5	1
107	Refocussing Antibody Responses by Chemical Modification of Vaccine Antigens. AIDS Research and Human Retroviruses, 2014, 30, A66-A67.	0.5	0
108	Shared sugars – parasite glycan homology in HIV-1 vaccine design. Trends in Parasitology, 2022, , .	1.5	0