
Andrew Feeney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1038554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Higher order modal dynamics of the flexural ultrasonic transducer. Journal Physics D: Applied Physics, 2022, 55, 07LT01.	2.8	1
2	Design and Dynamics of Oil Filled Flexural Ultrasonic Transducers for Elevated Pressures. IEEE Sensors Journal, 2022, 22, 12673-12680.	4.7	3
3	Active damping of ultrasonic receiving sensors through engineered pressure waves. Journal Physics D: Applied Physics, 2021, 54, 13LT01.	2.8	3
4	Piezoelectric energy harvesting for selfâ€powered wearable upper limb applications. Nano Select, 2021, 2, 1459-1479.	3.7	72
5	Additive Manufacture of Small-Scale Metamaterial Structures for Acoustic and Ultrasonic Applications. Micromachines, 2021, 12, 634.	2.9	10
6	The High Frequency Flexural Ultrasonic Transducer for Transmitting and Receiving Ultrasound in Air. IEEE Sensors Journal, 2020, 20, 7653-7660.	4.7	14
7	Venting in the Comparative Study of Flexural Ultrasonic Transducers to Improve Resilience at Elevated Environmental Pressure Levels. IEEE Sensors Journal, 2020, 20, 5776-5784.	4.7	4
8	Dynamic Nonlinearity in Piezoelectric Flexural Ultrasonic Transducers. IEEE Sensors Journal, 2019, 19, 6056-6066.	4.7	16
9	Wideband electromagnetic dynamic acoustic transducers (WEMDATs) for air-coupled ultrasonic applications. Applied Physics Letters, 2019, 114, .	3.3	3
10	Measurement using flexural ultrasonic transducers in high pressure environments. Proceedings of Meetings on Acoustics, 2019, , .	0.3	1
11	The nonlinear dynamics of flexural ultrasonic transducers. Proceedings of Meetings on Acoustics, 2019, , .	0.3	0
12	A Novel Mathematical Model for Transit-time Ultrasonic Flow Measurement. , 2019, , .		3
13	Wideband Electromagnetic Dynamic Acoustic Transducer as a Standard Acoustic Source for Air-coupled Ultrasonic Sensors. , 2019, , .		0
14	The Influence of Air Pressure on the Dynamics of Flexural Ultrasonic Transducers. Sensors, 2019, 19, 4710.	3.8	7
15	Flow Velocity Measurement Using a Spatial Averaging Method with Two-Dimensional Flexural Ultrasonic Array Technology. Sensors, 2019, 19, 4786.	3.8	12
16	A Comparison of Two Configurations for a Dual-Resonance Cymbal Transducer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 489-496.	3.0	8
17	Nonlinearity in the Dynamic Response of Flexural Ultrasonic Transducers. , 2018, 2, 1-4.		14
18	Analysis of Influence of Inconsistent Performances of Array Elements on Flexural Ultrasonic Phased Array for Measurement of Ultrasound in Fluids. , 2018, , .		2

ANDREW FEENEY

#	Article	IF	CITATIONS
19	High-Frequency Measurement of Ultrasound Using Flexural Ultrasonic Transducers. IEEE Sensors Journal, 2018, 18, 5238-5244.	4.7	22
20	The Dynamic Performance of Flexural Ultrasonic Transducers. Sensors, 2018, 18, 270.	3.8	18
21	Ultrasonic compaction of granular geological materials. Ultrasonics, 2017, 76, 136-144.	3.9	7
22	The electro-mechanical behaviour of flexural ultrasonic transducers. Applied Physics Letters, 2017, 110, .	3.3	21
23	HiFFUTs for high temperature ultrasound. Proceedings of Meetings on Acoustics, 2017, , .	0.3	0
24	Flow measurement based on two-dimensional flexural ultrasonic phased arrays. Proceedings of Meetings on Acoustics, 2017, , .	0.3	3
25	Two-dimensional flexural ultrasonic phased array for flow measurement. , 2017, , .		Ο
26	Dynamic characteristics of flexural ultrasonic transducers. Proceedings of Meetings on Acoustics, 2017, , .	0.3	2
27	Dynamics Characterisation of Cymbal Transducers for Power Ultrasonics Applications. Physics Procedia, 2016, 87, 29-34.	1.2	3
28	A Miniaturized Class IV Flextensional Ultrasonic Transducer. Physics Procedia, 2016, 87, 10-15.	1.2	3
29	Optimisation of a Cymbal Transducer for Its Use in a High-power Ultrasonic Cutting Device for Bone Surgery. Physics Procedia, 2016, 87, 35-41.	1.2	0
30	An Ultrasonic Compactor for Oil and Gas Exploration. Physics Procedia, 2016, 87, 72-78.	1.2	1
31	An ultrasonic orthopaedic surgical device based on a cymbal transducer. Ultrasonics, 2016, 72, 24-33.	3.9	28
32	Differential scanning calorimetry of superelastic Nitinol for tunable cymbal transducers. Journal of Intelligent Material Systems and Structures, 2016, 27, 1376-1387.	2.5	5
33	Ultrasonic biopsy needle based on the class IV flextensional configuration. , 2015, , .		1
34	Smart cymbal transducers with nitinol end caps tunable to multiple operating frequencies. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 1709-1719.	3.0	10
35	A cymbal transducer for power ultrasonics applications. Sensors and Actuators A: Physical, 2014, 210, 182-189.	4.1	31
36	Development status of AEOLDOS – A deorbit module for small satellites. Advances in Space Research, 2014, 54, 82-91.	2.6	29

#	Article	IF	CITATIONS
37	Smart cymbal transducers with Nitinol end-caps for power ultrasonics applications. , 2013, , .		0
38	Vibration characterisation of cymbal transducers for power ultrasonic applications. Journal of Physics: Conference Series, 2012, 382, 012063.	0.4	2
39	An Investigation of the Vibration Response of a Superelastic Nitinol Cymbal Transducer. , 0, , .		0