
Michael Schwarz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10385486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of hepatic zonation in mice by mass-spectrometric and antibody-based proteomics approaches. Biological Chemistry, 2022, 403, 331-343.	1.2	3
2	Regulation of expression of drug-metabolizing enzymes by oncogenic signaling pathways in liver tumors: a review. Acta Pharmaceutica Sinica B, 2020, 10, 113-122.	5.7	11
3	Inflammation-associated suppression of metabolic gene networks in acute and chronic liver disease. Archives of Toxicology, 2020, 94, 205-217.	1.9	32
4	Array-based Western-blotting reveals spatial differences in hepatic signaling and metabolism following CAR activation. Archives of Toxicology, 2020, 94, 1265-1278.	1.9	6
5	Classification or non-classification of substances with positive tumor findings in animal studies: Guidance by the German MAK commission. Regulatory Toxicology and Pharmacology, 2019, 108, 104444.	1.3	4
6	Lithium and glutamine synthetase: Protective effects following stress. Psychiatry Research, 2019, 281, 112544.	1.7	6
7	A mode-of-action ontology model for safety evaluation of chemicals: Outcome of a series of workshops on repeated dose toxicity. Toxicology in Vitro, 2019, 59, 44-50.	1.1	19
8	Drug-induced chromatin accessibility changes associate with sensitivity to liver tumor promotion. Life Science Alliance, 2019, 2, e201900461.	1.3	6
9	Mouse Hepatomas with <i>Ha-ras</i> and <i>B-raf</i> Mutations Differ in Mitogen-Activated Protein Kinase Signaling and Response to Constitutive Androstane Receptor Activation. Drug Metabolism and Disposition, 2018, 46, 1462-1465.	1.7	2
10	Hepatotoxic effects of cyproconazole and prochloraz in wild-type and hCAR/hPXR mice. Archives of Toxicology, 2017, 91, 2895-2907.	1.9	39
11	Xenobiotic CAR Activators Induce Dlk1-Dio3 Locus Noncoding RNA Expression in Mouse Liver. Toxicological Sciences, 2017, 158, 367-378.	1.4	7
12	Adverse outcome pathways: opportunities, limitations and open questions. Archives of Toxicology, 2017, 91, 3477-3505.	1.9	282
13	Progress in identifying epigenetic mechanisms of xenobiotic-induced non-genotoxic carcinogenesis. Current Opinion in Toxicology, 2017, 3, 62-70.	2.6	7
14	Defining baseline epigenetic landscapes in the rat liver. Epigenomics, 2017, 9, 1503-1527.	1.0	5
15	Loss of Tet1-Associated 5-Hydroxymethylcytosine Is Concomitant with Aberrant Promoter Hypermethylation in Liver Cancer. Cancer Research, 2016, 76, 3097-3108.	0.4	71
16	Inhibition of β-catenin signaling by phenobarbital in hepatoma cells in vitro. Toxicology, 2016, 370, 94-105.	2.0	6
17	Is the question of phenobarbital as potential liver cancer risk factor for humans really resolved?. Archives of Toxicology, 2016, 90, 1525-1526.	1.9	23
18	Coordinate regulation of Cyp2e1 by β-catenin- and hepatocyte nuclear factor 1α-dependent signaling. Toxicology, 2016, 350-352, 40-48.	2.0	14

#	Article	IF	CITATIONS
19	Tumor promotion and inhibition by phenobarbital in livers of conditional Apc-deficient mice. Archives of Toxicology, 2016, 90, 1481-1494.	1.9	19
20	Phenobarbital inhibits calpain activity and expression in mouse hepatoma cells. Biological Chemistry, 2016, 397, 91-96.	1.2	5
21	Real-time monitoring of oxygen uptake in hepatic bioreactor shows CYP450-independent mitochondrial toxicity of acetaminophen and amiodarone. Archives of Toxicology, 2016, 90, 1181-1191.	1.9	54
22	Preclinical evaluation of the anti-tumor effects of the natural isoflavone genistein in two xenograft mouse models monitored by [18F]FDG, [18F]FLT, and [64Cu]NODAGA-cetuximab small animal PET. Oncotarget, 2016, 7, 28247-28261.	0.8	10
23	Dysregulated serum response factor triggers formation of hepatocellular carcinoma. Hepatology, 2015, 61, 979-989.	3.6	30
24	Chemical Safety Assessment Using Read-Across: Assessing the Use of Novel Testing Methods to Strengthen the Evidence Base for Decision Making. Environmental Health Perspectives, 2015, 123, 1232-1240.	2.8	89
25	Signal integration by the CYP1A1 promoter a quantitative study. Nucleic Acids Research, 2015, 43, 5318-5330.	6.5	31
26	Comparative Analysis and Functional Characterization of HC-AFW1 Hepatocarcinoma Cells: Cytochrome P450 Expression and Induction by Nuclear Receptor Agonists. Drug Metabolism and Disposition, 2015, 43, 1781-1787.	1.7	15
27	SEURAT: Safety Evaluation Ultimately Replacing Animal Testing—Recommendations for future research in the field of predictive toxicology. Archives of Toxicology, 2015, 89, 15-23.	1.9	44
28	The ChemScreen project to design a pragmatic alternative approach to predict reproductive toxicity of chemicals. Reproductive Toxicology, 2015, 55, 114-123.	1.3	21
29	Prediction of embryotoxic potential using the ReProGlo stem cell-based Wnt reporter assay. Reproductive Toxicology, 2015, 55, 30-49.	1.3	12
30	Relevance of the mouse skin initiation–promotion model for the classification of carcinogenic substances encountered at the workplace. Regulatory Toxicology and Pharmacology, 2015, 72, 150-157.	1.3	8
31	Activating and Inhibitory Functions of WNT/ <i>β</i> Catenin in the Induction of Cytochromes P450 by Nuclear Receptors in HepaRG Cells. Molecular Pharmacology, 2015, 87, 1013-1020.	1.0	34
32	Rac1 promotes diethylnitrosamine (DEN)-induced formation of liver tumors. Carcinogenesis, 2015, 36, 378-389.	1.3	17
33	Application of HC-AFW1 Hepatocarcinoma Cells for Mechanistic Studies: Regulation of Cytochrome P450 2B6 Expression by Dimethyl Sulfoxide and Early Growth Response 1. Drug Metabolism and Disposition, 2015, 43, 1727-1733.	1.7	5
34	Evaluation of an alternative in vitro test battery for detecting reproductive toxicants in a grouping context. Reproductive Toxicology, 2015, 55, 11-19.	1.3	37
35	The SEURAT-1 approach towards animal free human safety assessment. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 9-24.	0.9	40
36	Model Systems for Understanding Mechanisms of Nongenotoxic Carcinogenesis: Response. Toxicological Sciences, 2015, 147, 299-300.	1.4	13

#	Article	IF	CITATIONS
37	Cooperation of structurally different aryl hydrocarbon receptor agonists and β-catenin in the regulation of CYP1A expression. Toxicology, 2014, 325, 31-41.	2.0	26
38	Haâ€ras and β atenin oncoproteins orchestrate metabolic programs in mouse liver tumors. International Journal of Cancer, 2014, 135, 1574-1585.	2.3	26
39	Chemically induced mouse liver tumors are resistant to treatment with atorvastatin. BMC Cancer, 2014, 14, 766.	1.1	12
40	Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion. Nucleic Acids Research, 2014, 42, 4180-4195.	6.5	17
41	Phenobarbital Induces Cell Cycle Transcriptional Responses in Mouse LiverÂHumanized for ConstitutiveÂAndrostane and Pregnane X Receptors. Toxicological Sciences, 2014, 139, 501-511.	1.4	60
42	Phenobarbital-Mediated Tumor Promotion in Transgenic Mice with Humanized CAR and PXR. Toxicological Sciences, 2014, 140, 259-270.	1.4	50
43	T-cell factor 4 and \hat{l}^2 -catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology, 2014, 59, 2344-2357.	3.6	137
44	SEURAT-1 liver gold reference compounds: a mechanism-based review. Archives of Toxicology, 2014, 88, 2099-2133.	1.9	26
45	Advancing the 3Rs in regulatory toxicology – Carcinogenicity testing: Scope for harmonisation and advancing the 3Rs in regulated sectors of the European Union. Regulatory Toxicology and Pharmacology, 2014, 69, 234-242.	1.3	20
46	Consensus report on the future of animal-free systemic toxicity testing. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 341-356.	0.9	113
47	Synergistic effects of β-catenin inhibitors and sorafenib in hepatoma cells. Anticancer Research, 2014, 34, 4677-83.	0.5	7
48	Selective poisoning of Ctnnb1-mutated hepatoma cells in mouse liver tumors by a single application of acetaminophen. Archives of Toxicology, 2013, 87, 1595-1607.	1.9	10
49	Non-melanoma skin cancer in mouse and man. Archives of Toxicology, 2013, 87, 783-798.	1.9	51
50	Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of Toxicology, 2013, 87, 1315-1530.	1.9	1,089
51	Identification of Dlk1-Dio3 Imprinted Gene Cluster Noncoding RNAs as Novel Candidate Biomarkers for Liver Tumor Promotion. Toxicological Sciences, 2013, 131, 375-386.	1.4	62
52	Biological and Tumor-Promoting Effects of Dioxin-like and Non-Dioxin-like Polychlorinated Biphenyls in Mouse Liver After Single or Combined Treatment. Toxicological Sciences, 2013, 133, 29-41.	1.4	29
53	Quantitative Analysis of the Growth Kinetics of Chemically Induced Mouse Liver Tumors by Magnetic Resonance Imaging. Toxicological Sciences, 2012, 126, 52-59.	1.4	16
54	Paradoxical cytotoxicity of tert-butylhydroquinone in vitro: what kills the untreated cells?. Archives of Toxicology, 2012, 86, 1481-1487.	1.9	38

#	Article	IF	CITATIONS
55	Dual-specificity phosphatases are targets of the Wnt/ \hat{l}^2 -catenin pathway and candidate mediators of \hat{l}^2 -catenin/Ras signaling interactions. Biological Chemistry, 2012, 393, 1183-1191.	1.2	13
56	A roadmap for the development of alternative (non-animal) methods for systemic toxicity testing. ALTEX: Alternatives To Animal Experimentation, 2012, 29, 3-91.	0.9	190
57	β-Catenin Signaling Increases during Melanoma Progression and Promotes Tumor Cell Survival and Chemoresistance. PLoS ONE, 2011, 6, e23429.	1.1	105
58	Phenotype of single hepatocytes expressing an activated version of Î ² -catenin in liver of transgenic mice. Journal of Molecular Histology, 2011, 42, 393-400.	1.0	24
59	Alternative (non-animal) methods for cosmetics testing: current status and future prospects—2010. Archives of Toxicology, 2011, 85, 367-485.	1.9	488
60	Differential expression of glutamine synthetase and cytochrome P450 isoforms in human hepatoblastoma. Toxicology, 2011, 281, 7-14.	2.0	26
61	Coordinate Regulation of Cytochrome P450 1A1 Expression in Mouse Liver by the Aryl Hydrocarbon Receptor and the β-Catenin Pathway. Toxicological Sciences, 2011, 122, 16-25.	1.4	69
62	Tumor formation in liver of conditional Â-catenin-deficient mice exposed to a diethylnitrosamine/phenobarbital tumor promotion regimen. Carcinogenesis, 2011, 32, 52-57.	1.3	57
63	Gender-Specific Interplay of Signaling through β-Catenin and CAR in the Regulation of Xenobiotic-Induced Hepatocyte Proliferation. Toxicological Sciences, 2011, 123, 113-122.	1.4	36
64	Phenotype and growth behavior of residual β-catenin-positive hepatocytes in livers of β-catenin-deficient mice. Histochemistry and Cell Biology, 2010, 134, 469-481.	0.8	37
65	ReProGlo: A new stem cell-based reporter assay aimed to predict embryotoxic potential of drugs and chemicals. Reproductive Toxicology, 2010, 30, 103-112.	1.3	48
66	The ReProTect Feasibility Study, a novel comprehensive in vitro approach to detect reproductive toxicants. Reproductive Toxicology, 2010, 30, 200-218.	1.3	99
67	Suppression of Casein Kinase 1α in Melanoma Cells Induces a Switch in β-Catenin Signaling to Promote Metastasis. Cancer Research, 2010, 70, 6999-7009.	0.4	77
68	Wnt/β-Catenin Signaling Activates and Determines Hepatic Zonal Expression of Glutathione S-Transferases in Mouse Liver. Toxicological Sciences, 2010, 115, 22-33.	1.4	59
69	Zonation of heme synthesis enzymes in mouse liver and their regulation by Î ² -catenin and Ha-ras. Biological Chemistry, 2010, 391, 1305-13.	1.2	23
70	Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10371-10376.	3.3	338
71	β-Catenin as a multilayer modulator of zonal cytochrome P450 expression in mouse liver. Biological Chemistry, 2010, 391, 139-148.	1.2	35
72	A Review of the Implementation of the Embryonic Stem Cell Test (EST). ATLA Alternatives To Laboratory Animals, 2009, 37, 313-328.	0.7	144

#	Article	IF	CITATIONS
73	Inducibility of Drug-Metabolizing Enzymes by Xenobiotics in Mice with Liver-Specific Knockout of <i>Ctnnb1</i> . Drug Metabolism and Disposition, 2009, 37, 1138-1145.	1.7	77
74	Hepatocarcinogenesis in mice with a conditional knockout of the hepatocyte growth factor receptor câ€Met. International Journal of Cancer, 2009, 124, 1767-1772.	2.3	28
75	Comparative Transcriptome and Proteome Analysis of Ha-ras and B-raf Mutated Mouse Liver Tumors. Journal of Proteome Research, 2009, 8, 3987-3994.	1.8	9
76	Promotion of hepatocarcinogenesis in humans and animal models. Archives of Toxicology, 2008, 82, 623-631.	1.9	40
77	Differential selection for B-raf and Ha-ras mutated liver tumors in mice with high and low susceptibility to hepatocarcinogenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 638, 66-74.	0.4	28
78	Tumor Promotion in Liver of Mice with a Conditional Cx26 Knockout. Toxicological Sciences, 2008, 103, 260-267.	1.4	17
79	Comparison of Mode of Action of Four Hepatocarcinogens: A Model-Based Approach. Toxicological Sciences, 2007, 99, 446-454.	1.4	18
80	Zonal Gene Expression in Mouse Liver Resembles Expression Patterns of Ha-ras and Î ² -Catenin Mutated Hepatomas. Drug Metabolism and Disposition, 2007, 35, 503-507.	1.7	38
81	The Peroxisome Proliferator WY-14,643 Promotes Hepatocarcinogenesis Caused by Endogenously Generated Oxidative DNA Base Modifications in Repair-Deficient Csbm/m/Ogg1â^'/âr' Mice. Cancer Research, 2007, 67, 5156-5161.	0.4	21
82	<i>In Vitro</i> Tests for Detecting Chemicals Affecting the Embryo Implantation Process. ATLA Alternatives To Laboratory Animals, 2007, 35, 421-439.	0.7	13
83	Regulation of P53 stability in p53 mutated human and mouse hepatoma cells. International Journal of Cancer, 2007, 120, 1459-1464.	2.3	9
84	Global gene expression inHa-ras andB-raf mutated mouse liver tumors. International Journal of Cancer, 2007, 121, 1382-1385.	2.3	19
85	Proteome analysis of chemically induced mouse liver tumors with different genotype. Proteomics, 2007, 7, 3318-3331.	1.3	16
86	Serum components and activated Haâ€ras antagonize expression of perivenous marker genes stimulated by βâ€catenin signaling in mouse hepatocytes. FEBS Journal, 2007, 274, 4766-4777.	2.2	45
87	Tumor promoting potency of PCBs 28 and 101 in rat liver. Toxicology Letters, 2006, 164, 133-143.	0.4	8
88	REGULATION OF CYP1A1 GENE EXPRESSION BY THE ANTIOXIDANT TERT-BUTYLHYDROQUINONE. Drug Metabolism and Disposition, 2006, 34, 1096-1101.	1.7	22
89	Differential gene expression in periportal and perivenous mouse hepatocytes. FEBS Journal, 2006, 273, 5051-5061.	2.2	211
90	Rex3 (reduced in expression 3) as a new tumor marker in mouse hepatocarcinogenesis. Toxicology, 2006, 227, 127-135.	2.0	5

6

#	Article	IF	CITATIONS
91	Ablation of gap junctional communication in hepatocytes of transgenic mice does not lead to disrupted cellular homeostasis or increased spontaneous tumourigenesis. European Journal of Cell Biology, 2006, 85, 717-728.	1.6	16
92	Zonal gene expression in murine liver: Lessons from tumors. Hepatology, 2006, 43, 407-414.	3.6	136
93	Reply:. Hepatology, 2006, 44, 512-513.	3.6	1
94	PCB 153, a Non-dioxin–like Tumor Promoter, Selects for β-Catenin (Catnb)–Mutated Mouse Liver Tumors. Toxicological Sciences, 2006, 93, 34-40.	1.4	54
95	B-Raf and Ha-ras mutations in chemically induced mouse liver tumors. Oncogene, 2005, 24, 1290-1295.	2.6	43
96	Modulation of liver tumorigenesis in Connexin32-deficient mouse. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 570, 33-47.	0.4	13
97	The Integrated Project ReProTect: A novel approach in reproductive toxicity hazard assessment. Reproductive Toxicology, 2005, 20, 441-452.	1.3	75
98	Genotype-phenotype relationships in hepatocellular tumors from mice and man. Hepatology, 2005, 42, 353-361.	3.6	86
99	Effect of the tumor promoter phenobarbital on the pattern of global gene expression in liver of connexin32-wild-type and connexin32-deficient mice. International Journal of Cancer, 2005, 115, 861-869.	2.3	16
100	Human p53 knock-in (hupki) mice do not differ in liver tumor response from their counterparts with murine p53. Carcinogenesis, 2005, 26, 1829-1834.	1.3	25
101	Carcinogenic risks of dioxin: Mechanistic considerations. Regulatory Toxicology and Pharmacology, 2005, 43, 19-34.	1.3	68
102	A Â-catenin-dependent pathway regulates expression of cytochrome P450 isoforms in mouse liver tumors. Carcinogenesis, 2004, 26, 239-248.	1.3	86
103	A Constitutively Active Dioxin/Aryl Hydrocarbon Receptor Promotes Hepatocarcinogenesis in Mice. Cancer Research, 2004, 64, 4707-4710.	0.4	204
104	Immunohistochemical Detection of Activated Caspases in Apoptotic Hepatocytes in Rat Liver. Toxicologic Pathology, 2004, 32, 9-15.	0.9	57
105	Insulin and dexamethasone inhibit TGF-β-induced apoptosis of hepatoma cells upstream of the caspase activation cascade. Toxicology, 2004, 204, 141-154.	2.0	16
106	WY-14,643-mediated promotion of hepatocarcinogenesis in connexin32-wild-type and connexin32-null mice. Carcinogenesis, 2003, 24, 1561-1565.	1.3	15
107	Role of Connexin32 and β-Catenin in Tumor Promotion in Mouse Liver. Toxicologic Pathology, 2003, 31, 99-102.	0.9	25
108	Prevalidation of a Rat Liver Foci Bioassay (RLFB) Based on Results from 1600 Rats: A Study Report. Toxicologic Pathology, 2003, 31, 60-79.	0.9	8

#	Article	IF	CITATIONS
109	Prevalidation of a Rat Liver Foci Bioassay (RLFB) Based on Results from 1600 Rats: A Study Report. Toxicologic Pathology, 2003, 31, 60-79.	0.9	6
110	Overexpression of glutamine synthetase is associated with beta-catenin-mutations in mouse liver tumors during promotion of hepatocarcinogenesis by phenobarbital. Cancer Research, 2002, 62, 5685-8.	0.4	102
111	Selective pressure during tumor promotion by phenobarbital leads to clonal outgrowth of β-catenin-mutated mouse liver tumors. Oncogene, 2001, 20, 7812-7816.	2.6	149
112	Effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin on Initiation and Promotion of GST-P-Positive Foci in Rat Liver: A Quantitative Analysis of Experimental Data Using a Stochastic Model. Toxicology and Applied Pharmacology, 2000, 167, 63-73.	1.3	37
113	Hepatocarcinogenesis in Female Mice With Mosaic Expression of Connexin32. Hepatology, 2000, 32, 501-506.	3.6	13
114	Ah receptor ligands and tumor promotion: survival of neoplastic cells. Toxicology Letters, 2000, 112-113, 69-77.	0.4	56
115	Inhibition of transforming growth factor beta1-induced hepatoma cell apoptosis by liver tumor promoters: characterization of primary signaling events and effects on CPP32-like caspase activity. Cell Death and Differentiation, 1999, 6, 190-200.	5.0	34
116	Wild-type function of the p53 tumor suppressor protein is not required for apoptosis of mouse hepatoma cells. Cell Death and Differentiation, 1998, 5, 87-95.	5.0	19
117	Functional analysis of the human cytochrome P4501A1 (CYP1A1) gene enhancer. FEBS Journal, 1998, 258, 803-812.	0.2	56
118	p21Ras downstream effectors are increased in activity or expression in mouse liver tumors but do not differ betweenRas-mutated andRas-wild-type lesions. Hepatology, 1998, 27, 1081-1088.	3.6	21
119	Mechanismen der Entstehung fremdstoffbedingter Krebsformen. , 1998, , 27-49.		0
120	High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin32. Current Biology, 1997, 7, 713-716.	1.8	281
121	Inhibition of apoptosis during 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated tumour promotion in rat liver. Carcinogenesis, 1995, 16, 1271-1275.	1.3	164
122	Role of cell proliferation at early stages of hepatocarcinogenesis. Toxicology Letters, 1995, 82-83, 27-32.	0.4	19
123	Promotion and Cocarcinogenesis. , 1995, , 123-124.		5
124	Tumor Promotion in Liver. , 1995, , 161-179.		8
125	1-hydroxymethylpyrene and its sulfuric acid ester: toxicological effects in vitro and in vivo, and metabolic aspects. Chemico-Biological Interactions, 1994, 92, 305-319.	1.7	20
126	Development of hydroxysteroid sulfotransferase-deficient lesions during hepatocarcinogenesis in rats. Carcinogenesis, 1993, 14, 2267-2270.	1.3	8

#	Article	IF	CITATIONS
127	Absence of mutations in the functional parts of the p120-GAP gene in carcinogen-induced mouse liver tumors. Carcinogenesis, 1992, 13, 1903-1905.	1.3	3
128	The tumour promoters dieldrin and phenobarbital increase the frequency of c-Ha-ras wild-type, but not of c-Ha-ras mutated focal liver lesions in male C3H/He mice. Carcinogenesis, 1992, 13, 477-481.	1.3	26
129	Enzyme and immunohistochemical phenotyping of diethylnitrosamine-induced liver lesions of male C3H/He, B6C3F1 and C57BL/6J mice. Carcinogenesis, 1992, 13, 691-697.	1.3	12
130	Role of mutations at codon 61 of the c-Ha-ras gene during diethylnitrosamine-induced hepatocarcinogenesis in C3H/He mice. Molecular Carcinogenesis, 1992, 6, 60-67.	1.3	36
131	p53 mutations are absent from carcinogen-induced mouse liver tumors but occur in cell lines established from these tumors. Molecular Carcinogenesis, 1992, 6, 148-158.	1.3	74
132	Effects of polychlorinated biphenyls in rat liver: Correlation between primary subcellular effects and promoting activity. Toxicology and Applied Pharmacology, 1991, 111, 454-468.	1.3	54
133	Effects of polychlorinated biphenyls in rat liver: Quantitative analysis of enzyme-altered foci. Toxicology and Applied Pharmacology, 1991, 111, 469-484.	1.3	56
134	Detection of genomic alterations in carcinogen-induced mouse liver tumors by DNA fingerprint analysis. Molecular Carcinogenesis, 1990, 3, 330-334.	1.3	6
135	Quantitative analysis of enzyme-altered foci in rat hepatocarcinogenesis experiments—I. Single agent regimen. Carcinogenesis, 1990, 11, 1271-1278.	1.3	120
136	Cell Proliferation and Hepatocarcinogenesis. , 1990, , 96-115.		5
137	Mutations at codon 61 of the Ha-ras proto-oncogene in precancerous liver lesions of the B6C3F1 mouse. Molecular Carcinogenesis, 1989, 2, 121-125.	1.3	42
138	Heterogeneity of enzyme-altered foci in rat liver. Toxicology Letters, 1989, 49, 297-317.	0.4	31
139	The phenotypic stability of altered hepatic foci: effect of the shortterm withdrawal of phenobarbital and of the long-term feeding of purified diets after the withdrawal of phenobarbital. Carcinogenesis, 1986, 7, 117-121.	1.3	42
140	Promoting effect of 4-dimethylaminoazobenzene on enzyme altered foci induced in rat liver by N-nitrosodiethanolamine. Carcinogenesis, 1984, 5, 725-730.	1.3	48
141	Effect of ethanol on early stages in nitrosamine carcinogenesis in rat liver. Cancer Letters, 1983, 20, 305-312.	3.2	23
142	Effect of ethanol on dimethylnitrosamine activation and DNA synthesis in rat liver. Carcinogenesis, 1982, 3, 1071-1075.	1.3	33