
Jinfang Nie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10384756/publications.pdf Version: 2024-02-01

LINEANC NIE

#	Article	IF	CITATIONS
1	Tyndall-Effect-inspired assay with gold nanoparticles for the colorimetric discrimination and quantification of mercury ions and glutathione. Talanta, 2022, 238, 122999.	5.5	13
2	Effects of chlorpyrifos on the metabolic profiling of Bacillus megaterium strain RRB. Chemosphere, 2022, 297, 134189.	8.2	8
3	Effect of neonicotinoid dinotefuran on root exudates of Brassica rapa var. chinensis. Chemosphere, 2021, 266, 129020.	8.2	13
4	Tyndall-effect-enhanced supersensitive naked-eye determination of mercury (II) ions with silver nanoparticles. Sensors and Actuators B: Chemical, 2021, 344, 130218.	7.8	30
5	Ultrasensitive visual detection of Hg ²⁺ ions <i>via</i> the Tyndall effect of gold nanoparticles. Chemical Communications, 2021, 57, 2613-2616.	4.1	25
6	On-site, rapid and visual method for nanomolar Hg ²⁺ detection based on the thymine–Hg ²⁺ –thymine triggered "double―aggregation of Au nanoparticles enhancing the Tyndall effect. RSC Advances, 2021, 11, 36859-36865.	3.6	7
7	Enhanced functional DNA biosensor for distance-based read-by-eye quantification of various analytes based on starch-hydrolysis-adjusted wettability change in paper devices. RSC Advances, 2020, 10, 28121-28127.	3.6	9
8	Transforming glucose into fluorescent graphene quantum dots <i>via</i> microwave radiation for sensitive detection of Al ³⁺ ions based on aggregation-induced enhanced emission. Analyst, The, 2020, 145, 6981-6986.	3.5	19
9	Highly Sensitive Colorimetric Detection of a Variety of Analytes via the Tyndall Effect. Analytical Chemistry, 2019, 91, 15114-15122.	6.5	35
10	Ratiometric fluorescent sensing of Pb2+ and Hg2+ with two types of carbon dot nanohybrids synthesized from the same biomass. Sensors and Actuators B: Chemical, 2019, 296, 126698.	7.8	88
11	Preparation and application of molecularly imprinted polymer solidâ€phase microextraction fiber for the selective analysis of auxins in tobacco 1. Journal of Separation Science, 2019, 42, 2687-2695.	2.5	11
12	Enhanced 3D paper-based devices with a personal glucose meter for highly sensitive and portable biosensing of silver ion. Biosensors and Bioelectronics, 2019, 137, 154-160.	10.1	30
13	Target-triggered in situ autocatalysis in nanopore membrane for point-of-care testing of sub-nanomolar Ag+. Sensors and Actuators B: Chemical, 2019, 287, 290-295.	7.8	5
14	Fluorescent kinetics combined with fourth-order calibration for the determination of diclofenac sodium in environmental water. Analytical and Bioanalytical Chemistry, 2019, 411, 2019-2029.	3.7	11
15	Equipment-Free Quantitative Aptamer-Based Colorimetric Assay Based on Target-Mediated Viscosity Change. ACS Omega, 2018, 3, 1451-1457.	3.5	3
16	Investigating the affinity of BDE154 and 3OH-BDE154 with HSA: Experimental and simulation validation. Environmental Toxicology and Pharmacology, 2017, 51, 85-93.	4.0	12
17	Instrument-free quantitative detection of alkaline phosphatase using paper-based devices. Analytical Methods, 2017, 9, 3375-3379.	2.7	12
18	Using the Rubik's Cube to directly produce paper analytical devices for quantitative point-of-care aptamer-based assays. Biosensors and Bioelectronics, 2017, 96, 194-200.	10.1	21

JINFANG NIE

#	Article	IF	CITATIONS
19	Analyte-triggered autocatalytic amplification combined with gold nanoparticle probes for colorimetric detection of heavy-metal ions. Chemical Communications, 2017, 53, 7477-7480.	4.1	59
20	Probing the binding mechanism of polybrominated diphenyl ethers with transthyretin by multi-spectroscopic and molecular dynamics simulations. Analytical Methods, 2017, 9, 3929-3940.	2.7	6
21	Fabrication of paper devices via laser-heating-wax-printing for high-tech enzyme-linked immunosorbent assays with low-tech pen-type pH meter readout. Analyst, The, 2017, 142, 511-516.	3.5	22
22	Instrument-free quantitative gold nanoparticle-based liquid-phase colorimetric assays for use in resource-poor environments. Chemical Communications, 2017, 53, 8407-8410.	4.1	13
23	New two dimensional liquid-phase colorimetric assay based on old iodine–starch complexation for the naked-eye quantitative detection of analytes. Chemical Communications, 2016, 52, 7454-7457.	4.1	15
24	Enhanced ELISA using a handheld pH meter and enzyme-coated microparticles for the portable, sensitive detection of proteins. Chemical Communications, 2016, 52, 3474-3477.	4.1	53
25	Naked-eye quantitative aptamer-based assay on paper device. Biosensors and Bioelectronics, 2016, 78, 538-546.	10.1	60
26	Timing readout in paper device for quantitative point-of-use hemin/G-quadruplex DNAzyme-based bioassays. Biosensors and Bioelectronics, 2015, 73, 13-18.	10.1	45
27	Equipment-Free Quantitative Measurement for Microfluidic Paper-Based Analytical Devices Fabricated Using the Principles of Movable-Type Printing. Analytical Chemistry, 2014, 86, 2005-2012.	6.5	99
28	An electrochemical sensing platform based on local repression of electrolyte diffusion for single-step, reagentless, sensitive detection of a sequence-specific DNA-binding protein. Analyst, The, 2014, 139, 2193-2198.	3.5	3
29	One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices. Analyst, The, 2013, 138, 671-676.	3.5	133
30	Low-Cost Fabrication of Paper-Based Microfluidic Devices by One-Step Plotting. Analytical Chemistry, 2012, 84, 6331-6335.	6.5	191
31	Superhydrophobic surface-based magnetic electrochemical immunoassay for detection of Schistosoma japonicum antibodies. Biosensors and Bioelectronics, 2012, 33, 23-28.	10.1	20
32	Nitrocellulose strip array assembled on superhydrophobic surface: An aqueous solution diffusion-localized platform for multianalyte immunogold staining assays. Biosensors and Bioelectronics, 2011, 26, 3272-3277.	10.1	11
33	Individually addressable microelectrode arrays fabricated with gold-coated pencil graphite particles for multiplexed and high sensitive impedance immunoassays. Biosensors and Bioelectronics, 2009, 25, 34-40.	10.1	44
34	Direct determination of reserpine in urine using excitation-emission fluorescence combined with three-way chemometric calibration methodologies. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2008, 3, 224-228.	0.4	1