Liang Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10384467/publications.pdf Version: 2024-02-01

		430874	713466
22	1,816	18	21
papers	citations	h-index	g-index
22	22	22	2929
all docs	docs citations	times ranked	citing authors

LIANC CHANC

#	Article	IF	CITATIONS
1	Nanowire Electrodes for Electrochemical Energy Storage Devices. Chemical Reviews, 2014, 114, 11828-11862.	47.7	617
2	Efficient Visible Light Photocatalytic CO ₂ Reforming of CH ₄ . ACS Catalysis, 2016, 6, 494-497.	11.2	238
3	Nanoscroll Buffered Hybrid Nanostructural VO ₂ (B) Cathodes for Highâ€Rate and Longâ€Life Lithium Storage. Advanced Materials, 2013, 25, 2969-2973.	21.0	207
4	3D flower-structured graphene from CO ₂ for supercapacitors with ultrahigh areal capacitance at high current density. Journal of Materials Chemistry A, 2015, 3, 10183-10187.	10.3	88
5	An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance. ACS Applied Materials & Interfaces, 2017, 9, 24655-24661.	8.0	83
6	Breakthroughs in Designing Commercial-Level Mass-Loading Graphene Electrodes for Electrochemical Double-Layer Capacitors. Matter, 2019, 1, 596-620.	10.0	79
7	Pore-controlled synthesis of Mn ₂ O ₃ microspheres for ultralong-life lithium storage electrode. RSC Advances, 2013, 3, 1947-1952.	3.6	73
8	1T Phase Transition Metal Dichalcogenides for Hydrogen Evolution Reaction. Electrochemical Energy Reviews, 2021, 4, 194-218.	25.5	65
9	3D Channel-structured graphene as efficient electrodes for capacitive deionization. Journal of Colloid and Interface Science, 2019, 538, 420-425.	9.4	53
10	The Bright Future for Electrode Materials of Energy Devices: Highly Conductive Porous Na-Embedded Carbon. Nano Letters, 2016, 16, 8029-8033.	9.1	50
11	Structurally and chemically engineered graphene for capacitive deionization. Journal of Materials Chemistry A, 2021, 9, 1429-1455.	10.3	45
12	New Chemistry for New Material: Highly Dense Mesoporous Carbon Electrode for Supercapacitors with High Areal Capacitance. ACS Applied Materials & Interfaces, 2018, 10, 33162-33169.	8.0	32
13	Direct conversion of CO ₂ to meso/macro-porous frameworks of surface-microporous graphene for efficient asymmetrical supercapacitors. Journal of Materials Chemistry A, 2017, 5, 23252-23258.	10.3	27
14	KOH-assisted microwave post-treatment of activated carbon for efficient symmetrical double-layer capacitors. International Journal of Energy Research, 2017, 41, 728-735.	4.5	27
15	Highly conductive porous Na-embedded carbon nanowalls for high-performance capacitive deionization. Journal of Physics and Chemistry of Solids, 2018, 116, 347-352.	4.0	25
16	Excellent performance of highly conductive porous Na-embedded carbon nanowalls for electric double-layer capacitors with a wide operating temperature range. Journal of Materials Chemistry A, 2017, 5, 9090-9096.	10.3	22
17	Surface-microporous graphene for high-performance capacitive deionization under ultralow saline concentration. Journal of Physics and Chemistry of Solids, 2019, 125, 135-140.	4.0	22
18	Design and Synthesis of 3D Potassium-Ion Pre-Intercalated Graphene for Supercapacitors. Industrial & Engineering Chemistry Research, 2018, 57, 3610-3616.	3.7	18

LIANG CHANG

8

#	Article	IF	CITATIONS
19	One-step synthesis of high surface-area honeycomb graphene clusters for highly efficient capacitive deionization. Journal of Physics and Chemistry of Solids, 2019, 134, 64-68.	4.0	14
20	Kinetic analysis and thermodynamic simulation of alkaliâ€silica reaction in cementitious materials. Journal of the American Ceramic Society, 2019, 102, 1463-1478.	3.8	13
21	Excellent capacitive deionization performance of meso-carbon microbeads. RSC Advances, 2016, 6, 47285-47291.	3.6	10

22 2.21 Supercapacitors. , 2018, , 663-695.