
Hyun-Jung Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10384053/publications.pdf Version: 2024-02-01

HVUN-LUNC CHOL

#	Article	IF	CITATIONS
1	Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 2015, 115, 4823-4892.	23.0	2,083
2	Nitrogenated holey two-dimensional structures. Nature Communications, 2015, 6, 6486.	5.8	923
3	Polyaniline-Grafted Reduced Graphene Oxide for Efficient Electrochemical Supercapacitors. ACS Nano, 2012, 6, 1715-1723.	7.3	807
4	Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy, 2012, 1, 534-551.	8.2	628
5	Edge-carboxylated graphene nanosheets via ball milling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5588-5593.	3.3	595
6	Large-Scale Production of Edge-Selectively Functionalized Graphene Nanoplatelets via Ball Milling and Their Use as Metal-Free Electrocatalysts for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 1386-1393.	6.6	578
7	Edgeâ€Selectively Sulfurized Graphene Nanoplatelets as Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect. Advanced Materials, 2013, 25, 6138-6145.	11.1	537
8	Two-dimensional polyaniline (C ₃ N) from carbonized organic single crystals in solid state. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7414-7419.	3.3	380
9	Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Scientific Reports, 2013, 3, 1810.	1.6	300
10	N-Doped Graphene Nanoplatelets as Superior Metal-Free Counter Electrodes for Organic Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 5243-5250.	7.3	238
11	Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Scientific Reports, 2013, 3, 2260.	1.6	204
12	Edgeâ€Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dye‣ensitized Solar Cells and Lithium Ion Batteries. Advanced Functional Materials, 2015, 25, 1170-1179.	7.8	174
13	Formation of Large-Area Nitrogen-Doped Graphene Film Prepared from Simple Solution Casting of Edge-Selectively Functionalized Graphite and Its Electrocatalytic Activity. Chemistry of Materials, 2011, 23, 3987-3992.	3.2	171
14	Graphene Nanoplatelets Doped with N at its Edges as Metalâ€Free Cathodes for Organic Dyeâ€Sensitized Solar Cells. Advanced Materials, 2014, 26, 3055-3062.	11.1	140
15	Fe@C2N: A highly-efficient indirect-contact oxygen reduction catalyst. Nano Energy, 2018, 44, 304-310.	8.2	118
16	Nitrogen-Doped Graphene Nanoplatelets from Simple Solution Edge-Functionalization for n-Type Field-Effect Transistors. Journal of the American Chemical Society, 2013, 135, 8981-8988.	6.6	113
17	Graphene in photovoltaic applications: organic photovoltaic cells (OPVs) and dye-sensitized solar cells (DSSCs). Journal of Materials Chemistry A, 2014, 2, 12136.	5.2	107
18	High-performance dye-sensitized solar cells using edge-halogenated graphene nanoplatelets as counter electrodes. Nano Energy, 2015, 13, 336-345.	8.2	85

Hyun-Jung Choi

#	Article	IF	CITATIONS
19	Edge-carboxylated graphene nanoplatelets as oxygen-rich metal-free cathodes for organic dye-sensitized solar cells. Energy and Environmental Science, 2014, 7, 1044-1052.	15.6	82
20	Controlled Fabrication of Hierarchically Structured Nitrogenâ€Đoped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst. Advanced Functional Materials, 2017, 27, 1605717.	7.8	80
21	Antimony-doped graphene nanoplatelets. Nature Communications, 2015, 6, 7123.	5.8	77
22	Nb-doped TiO2 nanoparticles for organic dye-sensitized solar cells. RSC Advances, 2013, 3, 16380.	1.7	75
23	Simple solution-based synthesis of pyridinic-rich nitrogen-doped graphene nanoplatelets for supercapacitors. Applied Energy, 2017, 195, 1071-1078.	5.1	60
24	Graphene supported non-precious metal-macrocycle catalysts for oxygen reduction reaction in fuel cells. Nanoscale, 2015, 7, 6991-6998.	2.8	58
25	Water-Dispersible, Sulfonated Hyperbranched Poly(ether-ketone) Grafted Multiwalled Carbon Nanotubes as Oxygen Reduction Catalysts. ACS Nano, 2012, 6, 6345-6355.	7.3	57
26	Solvent-free mechanochemical reduction of graphene oxide. Carbon, 2014, 77, 501-507.	5.4	43
27	Heavily aluminated graphene nanoplatelets as an efficient flame-retardant. Carbon, 2017, 116, 77-83.	5.4	43
28	Wet-chemical nitrogen-doping of graphene nanoplatelets as electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 7659-7665.	5.2	40
29	Nanocomposite prepared from <i>in situ</i> grafting of polypyrrole to aminobenzoylâ€functionalized multiwalled carbon nanotube and its electrochemical properties. Journal of Polymer Science Part A, 2011, 49, 2529-2537.	2.5	35
30	Edgeâ€Selectively Functionalized Graphene Nanoplatelets. Chemical Record, 2013, 13, 224-238.	2.9	31
31	Wedging graphite into graphene and graphene-like platelets by dendritic macromolecules. Journal of Materials Chemistry, 2011, 21, 7820.	6.7	27
32	A facile approach to tailoring electrocatalytic activities of imine-rich nitrogen-doped graphene for oxygen reduction reaction. Carbon, 2017, 122, 515-523.	5.4	25
33	Electrochemical activity of a polyaniline/polyaniline-grafted multiwalled carbon nanotube mixture produced by a simple suspension polymerization. Electrochimica Acta, 2011, 56, 10023-10031.	2.6	22
34	Boron-nitrogen-phosphorous doped graphene nanoplatelets for enhanced electrocatalytic activity. European Polymer Journal, 2018, 99, 511-517.	2.6	17
35	Metalated graphene nanoplatelets and their uses as anode materials for lithium-ion batteries. 2D Materials, 2017, 4, 014002.	2.0	15
36	Two and three dimensional network polymers for electrocatalysis. Physical Chemistry Chemical Physics, 2014, 16, 11150-11161.	1.3	11

Hyun-Jung Choi

#	Article	IF	CITATIONS
37	Oneâ€Pot Purification and Iodination of Waste Kish Graphite into Highâ€Quality Electrocatalyst. Particle and Particle Systems Characterization, 2017, 34, 1600426.	1.2	8
38	Immobilization of platinum nanoparticles on 3,4-diaminobenzoyl-functionalized multi-walled carbon nanotube and its electrocatalytic activity. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	6
39	Fluorine: Edge-Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dye-Sensitized Solar Cells and Lithium Ion Batteries (Adv. Funct. Mater. 8/2015). Advanced Functional Materials, 2015, 25, 1328-1328.	7.8	6
40	Large clusters and hollow microfibers by multicomponent self-assembly of citrate stabilized gold nanoparticles with temperature-responsive amphiphilic dendrimers. Journal of Materials Chemistry, 2012, 22, 13365.	6.7	5
41	Mild and Nondestructive Chemical Modification of Carbon Nanotubes (CNTs): Direct Friedel-Crafts Acylation Reaction. , 0, , .		2
42	Electrocatalyts: Controlled Fabrication of Hierarchically Structured Nitrogenâ€Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	7.8	1