
Thomas Machleidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10383949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CDK Family PROTAC Profiling Reveals Distinct Kinetic Responses and Cell Cycle–Dependent Degradation of CDK2. SLAS Discovery, 2021, 26, 560-569.	2.7	21
2	Streamlined Target Deconvolution Approach Utilizing a Single Photoreactive Chloroalkane Capture Tag. ACS Chemical Biology, 2021, 16, 404-413.	3.4	6
3	Toward a Point-of-Need Bioluminescence-Based Immunoassay Utilizing a Complete Shelf-Stable Reagent. Analytical Chemistry, 2021, 93, 5177-5184.	6.5	17
4	An Integrated Approach toward NanoBRET Tracers for Analysis of GPCR Ligand Engagement. Molecules, 2021, 26, 2857.	3.8	3
5	A Simple and Scalable Strategy for Analysis of Endogenous Protein Dynamics. Scientific Reports, 2020, 10, 8953.	3.3	25
6	The luminescent HiBiT peptide enables selective quantitation of G protein–coupled receptor ligand engagement and internalization in living cells. Journal of Biological Chemistry, 2020, 295, 5124-5135.	3.4	33
7	Utilizing a Simple Method for Stoichiometric Protein Labeling to Quantify Antibody Blockade. Scientific Reports, 2019, 9, 7046.	3.3	9
8	A real-time, bioluminescent annexin V assay for the assessment of apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2019, 24, 184-197.	4.9	60
9	Homogeneous Assay for Target Engagement Utilizing Bioluminescent Thermal Shift. ACS Medicinal Chemistry Letters, 2018, 9, 546-551.	2.8	36
10	CRISPR-Mediated Tagging of Endogenous Proteins with a Luminescent Peptide. ACS Chemical Biology, 2018, 13, 467-474.	3.4	251
11	Quantitative, Wide-Spectrum Kinase Profiling in Live Cells for Assessing the Effect of Cellular ATP on Target Engagement. Cell Chemical Biology, 2018, 25, 206-214.e11.	5.2	197
12	Highly Potent Cell-Permeable and Impermeable NanoLuc Luciferase Inhibitors. ACS Chemical Biology, 2017, 12, 1028-1037.	3.4	33
13	Real-time analysis of the binding of fluorescent VEGF 165 a to VEGFR2 in living cells: Effect of receptor tyrosine kinase inhibitors and fate of internalized agonist-receptor complexes. Biochemical Pharmacology, 2017, 136, 62-75.	4.4	46
14	Cell-based, bioluminescent assay for monitoring the interaction between PCSK9 and the LDL receptor. Journal of Lipid Research, 2017, 58, 1722-1729.	4.2	7
15	Coelenterazine analogues emit red-shifted bioluminescence with NanoLuc. Organic and Biomolecular Chemistry, 2017, 15, 8559-8567.	2.8	46
16	Three Efficient Methods for Preparation of Coelenterazine Analogues. Chemistry - A European Journal, 2016, 22, 10369-10375.	3.3	17
17	NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells. ACS Chemical Biology, 2016, 11, 400-408.	3.4	935
18	Application of BRET to monitor ligand binding to GPCRs. Nature Methods, 2015, 12, 661-663.	19.0	209

THOMAS MACHLEIDT

#	Article	IF	CITATIONS
19	Target engagement and drug residence time can be observed in living cells with BRET. Nature Communications, 2015, 6, 10091.	12.8	208
20	NanoBRET—A Novel BRET Platform for the Analysis of Protein–Protein Interactions. ACS Chemical Biology, 2015, 10, 1797-1804.	3.4	360
21	Identification of known drugs targeting the endoplasmic reticulum stress response. Analytical and Bioanalytical Chemistry, 2015, 407, 5343-5351.	3.7	11
22	A luminescent assay for real-time measurements of receptor endocytosis in living cells. Analytical Biochemistry, 2015, 489, 1-8.	2.4	21
23	Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate. ACS Chemical Biology, 2012, 7, 1848-1857.	3.4	1,229
24	Discovery of Potent and Selective Covalent Inhibitors of JNK. Chemistry and Biology, 2012, 19, 140-154.	6.0	286
25	Design and Characterization of a Potent and Selective Dual ATP- and Substrate-Competitive Subnanomolar Bidentate c-Jun N-Terminal Kinase (JNK) Inhibitor. Journal of Medicinal Chemistry, 2011, 54, 6206-6214.	6.4	33
26	Design, synthesis, and structure–activity relationship studies of thiophene-3-carboxamide derivatives as dual inhibitors of the c-Jun N-terminal kinase. Bioorganic and Medicinal Chemistry, 2011, 19, 2582-2588.	3.0	14
27	TR-FRET Cellular Assays for Interrogating Posttranslational Modifications of Histone H3. Journal of Biomolecular Screening, 2011, 16, 1236-1246.	2.6	27
28	Synthesis and optimization of thiadiazole derivatives as a novel class of substrate competitive c-Jun N-terminal kinase inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 590-596.	3.0	21
29	Development of LanthaScreenâ,,¢ Cellular Assays for Key Components within the PI3K/AKT/mTOR Pathway. Journal of Biomolecular Screening, 2009, 14, 121-132.	2.6	27
30	Multiplexing of Pathway-Specific β-Lactamase Reporter Gene Assays by Optical Coding With Qtracker® Nanocrystals. Journal of Biomolecular Screening, 2009, 14, 845-852.	2.6	3
31	Generation of Site-Specific Retargeting Platform Cell Lines for Drug Discovery Using phiC31 and R4 Integrases. Journal of Biomolecular Screening, 2009, 14, 1207-1215.	2.6	29
32	Fluorescent labeling of proteins in living cells using the FKBP12 (F36V) tag. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 207-224.	1.5	22
33	Discovery of 2-(5-nitrothiazol-2-ylthio)benzo[d]thiazoles as novel c-Jun N-terminal kinase inhibitors. Bioorganic and Medicinal Chemistry, 2009, 17, 2712-2717.	3.0	23
34	Characterization of serotonin 5-hydroxytryptamine-1A receptor activation using a phospho-extracellular-signal regulated kinase 2 sensor. Analytical Biochemistry, 2009, 393, 95-104.	2.4	12
35	Design, Synthesis, and Structureâ^'Activity Relationship of Substrate Competitive, Selective, and in Vivo Active Triazole and Thiadiazole Inhibitors of the c-Jun N-Terminal Kinase. Journal of Medicinal Chemistry, 2009, 52, 1943-1952.	6.4	71
36	High-throughput cellular assays for regulated posttranslational modifications. Analytical Biochemistry, 2008, 372, 189-197.	2.4	30

THOMAS MACHLEIDT

#	ARTICLE	IF	CITATIONS
37	Cellular LanthaScreen and <i>β</i> -Lactamase Reporter Assays for High-Throughput Screening of JAK2 Inhibitors. Assay and Drug Development Technologies, 2008, 6, 519-529.	1.2	21
38	HTS Assays Using a Disease-Relevant Cell Model for Interrogating the MAP Kinase Pathway Initiated by Multiple Receptors. Assay and Drug Development Technologies, 2008, 6, 351-359.	1.2	6
39	Identification of a new JNK inhibitor targeting the JNK-JIP interaction site. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16809-16813.	7.1	174
40	Simian Virus 40 Small Tumor Antigen Induces Deregulation of the Actin Cytoskeleton and Tight Junctions in Kidney Epithelial Cells. Journal of Virology, 2003, 77, 2807-2818.	3.4	74
41	Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight junction complex. Journal of Cell Biology, 2002, 158, 967-978.	5.2	238
42	Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. Journal of Cell Science, 2002, 115, 4327-4339.	2.0	273
43	Human Endothelial Cell Activation and Mediator Release in Response to Listeria monocytogenesVirulence Factors. Infection and Immunity, 2001, 69, 897-905.	2.2	67
44	Multiple Domains in Caveolin-1 Control Its Intracellular Traffic. Journal of Cell Biology, 2000, 148, 17-28.	5.2	106
45	Inhibition of Receptor Internalization by Monodansylcadaverine Selectively Blocks p55 Tumor Necrosis Factor Receptor Death Domain Signaling. Journal of Biological Chemistry, 1999, 274, 10203-10212.	3.4	181
46	Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nature Cell Biology, 1999, 1, 369-375.	10.3	106
47	Caspase 7-induced cleavage of kinectin in apoptotic cells. FEBS Letters, 1998, 436, 51-54.	2.8	29
48	Sphingomyelinases and TNF-Induced Apoptosis. Cellular Physiology and Biochemistry, 1996, 6, 337-344.	1.6	11
49	TNF-Induced Activation of NF-κB. Immunobiology, 1995, 193, 193-203.	1.9	235
50	Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell, 1994, 78, 1005-1015.	28.9	730
51	The role of diacylglycerol and ceramide in tumor necrosis factor and interleukin-1 signal transduction. Journal of Leukocyte Biology, 1994, 56, 533-541.	3.3	191
52	Rapid proteolysis of lκB-α is necessary for activation of transcription factor NF-κB. Nature, 1993, 365, 182-185.	27.8	1,146
53	TNF activates NF-κB by phosphatidylcholine-specific phospholipase C-induced "Acidic―sphingomyelin breakdown. Cell, 1992, 71, 765-776.	28.9	1,089