
Xuewen Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10383735/publications.pdf Version: 2024-02-01

XHEWEN DH

#	Article	IF	CITATIONS
1	A Crowding Barrier to Protein Inhibition in Colloidal Aggregates. Journal of Medicinal Chemistry, 2021, 64, 4109-4116.	6.4	7
2	Cell ompatible Nanoprobes for Imaging Intracellular Phosphatase Activities. ChemBioChem, 2019, 20, 526-531.	2.6	16
3	Cellular Uptake of A Taurine-Modified, Ester Bond-Decorated D-Peptide Derivative via Dynamin-Based Endocytosis and Macropinocytosis. Molecular Therapy, 2018, 26, 648-658.	8.2	20
4	Enzymatic Self-Assembly Confers Exceptionally Strong Synergism with NF-ήB Targeting for Selective Necroptosis of Cancer Cells. Journal of the American Chemical Society, 2018, 140, 2301-2308.	13.7	63
5	Enzymatic formation of curcumin in vitro and in vivo. Nano Research, 2018, 11, 3453-3461.	10.4	14
6	Kinetic Analysis of Nanostructures Formed by Enzyme-Instructed Intracellular Assemblies against Cancer Cells. ACS Nano, 2018, 12, 3804-3815.	14.6	38
7	Selection of Secondary Structures of Heterotypic Supramolecular Peptide Assemblies by an Enzymatic Reaction. Angewandte Chemie, 2018, 130, 11890-11895.	2.0	11
8	Selection of Secondary Structures of Heterotypic Supramolecular Peptide Assemblies by an Enzymatic Reaction. Angewandte Chemie - International Edition, 2018, 57, 11716-11721.	13.8	31
9	Adaptive Multifunctional Supramolecular Assemblies of Glycopeptides Rapidly Enable Morphogenesis. Biochemistry, 2018, 57, 4867-4879.	2.5	17
10	Downâ€regulating Proteolysis to Enhance Anticancer Activity of Peptide Nanofibers. Chemistry - an Asian Journal, 2018, 13, 3464-3468.	3.3	6
11	Enzyme-instructed self-assembly of peptides containing phosphoserine to form supramolecular hydrogels as potential soft biomaterials. Frontiers of Chemical Science and Engineering, 2017, 11, 509-515.	4.4	24
12	Hyperâ€Crosslinkers Lead to Temperature―and pHâ€Responsive Polymeric Nanogels with Unusual Volume Change. Angewandte Chemie - International Edition, 2017, 56, 2623-2627.	13.8	24
13	Hyperâ€Crosslinkers Lead to Temperature―and pHâ€Responsive Polymeric Nanogels with Unusual Volume Change. Angewandte Chemie, 2017, 129, 2667-2671.	2.0	3
14	Selectively Inducing Cancer Cell Death by Intracellular Enzymeâ€Instructed Selfâ€Assembly (EISA) of Dipeptide Derivatives. Advanced Healthcare Materials, 2017, 6, 1601400.	7.6	56
15	In situ generated Dâ€peptidic nanofibrils as multifaceted apoptotic inducers to target cancer cells. Cell Death and Disease, 2017, 8, e2614-e2614.	6.3	40
16	Supramolecular biofunctional materials. Biomaterials, 2017, 129, 1-27.	11.4	196
17	Aromatic–Aromatic Interactions Enable α-Helix to β-Sheet Transition of Peptides to Form Supramolecular Hydrogels. Journal of the American Chemical Society, 2017, 139, 71-74.	13.7	124
18	Self-assembly of nucleopeptides to interact with DNAs. Interface Focus, 2017, 7, 20160116.	3.0	22

XUEWEN DU

#	Article	IF	CITATIONS
19	Enzymatic self-assembly of an immunoreceptor tyrosine-based inhibitory motif (ITIM). Organic and Biomolecular Chemistry, 2017, 15, 5689-5692.	2.8	7
20	Chirality Controls Reactionâ€Ðiffusion of Nanoparticles for Inhibiting Cancer Cells. ChemNanoMat, 2017, 3, 17-21.	2.8	23
21	Regulating the Rate of Molecular Selfâ€Assembly for Targeting Cancer Cells. Angewandte Chemie, 2016, 128, 5864-5869.	2.0	21
22	Minimal C-terminal modification boosts peptide self-assembling ability for necroptosis of cancer cells. Chemical Communications, 2016, 52, 6332-6335.	4.1	30
23	Enzyme-Instructed Self-Assembly for Spatiotemporal Profiling of the Activities of Alkaline Phosphatases on Live Cells. CheM, 2016, 1, 246-263.	11.7	143
24	Ligand–Receptor Interaction Modulates the Energy Landscape of Enzyme-Instructed Self-Assembly of Small Molecules. Journal of the American Chemical Society, 2016, 138, 15397-15404.	13.7	42
25	Regulating the Rate of Molecular Selfâ€Assembly for Targeting Cancer Cells. Angewandte Chemie - International Edition, 2016, 55, 5770-5775.	13.8	77
26	Enzyme-Instructed Self-Assembly of Small <scp>d</scp> -Peptides as a Multiple-Step Process for Selectively Killing Cancer Cells. Journal of the American Chemical Society, 2016, 138, 3813-3823.	13.7	220
27	The enzyme-instructed assembly of the core of yeast prion Sup35 to form supramolecular hydrogels. Journal of Materials Chemistry B, 2016, 4, 1318-1323.	5.8	11
28	Nanonets Collect Cancer Secretome from Pericellular Space. PLoS ONE, 2016, 11, e0154126.	2.5	11
29	Synthesis and evaluation of the biostability and cell compatibility of novel conjugates of nucleobase, peptidic epitope, and saccharide. Beilstein Journal of Organic Chemistry, 2015, 11, 1352-1359.	2.2	6
30	Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chemical Reviews, 2015, 115, 13165-13307.	47.7	1,497
31	Enzyme transformation to modulate the ligand–receptor interactions between small molecules. Chemical Communications, 2015, 51, 4899-4901.	4.1	10
32	Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology. Prion, 2015, 9, 110-118.	1.8	12
33	Ectoenzyme switches the surface of magnetic nanoparticles for selective binding of cancer cells. Journal of Colloid and Interface Science, 2015, 447, 273-277.	9.4	15
34	Taurine Boosts Cellular Uptake of Small <scp>d</scp> -Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly. Journal of the American Chemical Society, 2015, 137, 10040-10043.	13.7	140
35	Supramolecular Glycosylation Accelerates Proteolytic Degradation of Peptide Nanofibrils. Journal of the American Chemical Society, 2015, 137, 10092-10095.	13.7	32
36	Mixing Biomimetic Heterodimers of Nucleopeptides to Generate Biocompatible and Biostable Supramolecular Hydrogels. Angewandte Chemie - International Edition, 2015, 54, 5705-5708.	13.8	71

XUEWEN DU

#	Article	IF	CITATIONS
37	Supramolecular Detoxification of Neurotoxic Nanofibrils of Small Molecules via Morphological Switch. Bioconjugate Chemistry, 2015, 26, 1879-1883.	3.6	7
38	Ligand–Receptor Interaction Catalyzes the Aggregation of Small Molecules To Induce Cell Necroptosis. Journal of the American Chemical Society, 2015, 137, 26-29.	13.7	42
39	The first CD73-instructed supramolecular hydrogel. Journal of Colloid and Interface Science, 2015, 447, 269-272.	9.4	15
40	Spatiotemporal Profiling the Activities of Ectophosphatases on Cancer Cells by Molecular Imaging. FASEB Journal, 2015, 29, 577.8.	0.5	0
41	Supramolecular Nanofibers/Hydrogels of the Conjugates of Nucleobase, Saccharide, and Amino Acids. Chinese Journal of Chemistry, 2014, 32, 313-318.	4.9	3
42	Enzymatic Transformation of Phosphate Decorated Magnetic Nanoparticles for Selectively Sorting and Inhibiting Cancer Cells. Bioconjugate Chemistry, 2014, 25, 2129-2133.	3.6	24
43	Supramolecular Nanofibrils Inhibit Cancer Progression In Vitro and In Vivo. Advanced Healthcare Materials, 2014, 3, 1217-1221.	7.6	39
44	Synthesis of novel conjugates of a saccharide, amino acids, nucleobase and the evaluation of their cell compatibility. Beilstein Journal of Organic Chemistry, 2014, 10, 2406-2413.	2.2	18
45	Supramolecular Hydrogels Made of Basic Biological Building Blocks. Chemistry - an Asian Journal, 2014, 9, 1446-1472.	3.3	105
46	Aromatic–Aromatic Interactions Enhance Interfiber Contacts for Enzymatic Formation of a Spontaneously Aligned Supramolecular Hydrogel. Journal of the American Chemical Society, 2014, 136, 2970-2973.	13.7	126
47	A naphthalene-containing amino acid enables hydrogelation of a conjugate of nucleobase–saccharide–amino acids. Chemical Communications, 2014, 50, 1992.	4.1	25
48	Enzyme-instructed self-assembly of hydrogelators consisting of nucleobases, amino acids, and saccharide. RSC Advances, 2014, 4, 26487.	3.6	23
49	<scp>d</scp> -Amino Acids Modulate the Cellular Response of Enzymatic-Instructed Supramolecular Nanofibers of Small Peptides. Biomacromolecules, 2014, 15, 3559-3568.	5.4	98
50	Supramolecular Assemblies of a Conjugate of Nucleobase, Amino Acids, and Saccharide Act as Agonists for Proliferation of Embryonic Stem Cells and Development of Zygotes. Bioconjugate Chemistry, 2014, 25, 1031-1035.	3.6	43
51	Imaging Self-Assembly Dependent Spatial Distribution of Small Molecules in a Cellular Environment. Langmuir, 2013, 29, 15191-15200.	3.5	41
52	<scp>d</scp> -Amino Acids Boost the Selectivity and Confer Supramolecular Hydrogels of a Nonsteroidal Anti-Inflammatory Drug (NSAID). Journal of the American Chemical Society, 2013, 135, 542-545.	13.7	264
53	Selfâ€Delivery Multifunctional Antiâ€HIV Hydrogels for Sustained Release. Advanced Healthcare Materials, 2013, 2, 1586-1590.	7.6	60
54	Interactions between cellular proteins and morphologically different nanoscale aggregates of small molecules. RSC Advances, 2013, 3, 7704.	3.6	30

XUEWEN DU

#	Article	IF	CITATIONS
55	Dephosphorylation of <scp>d</scp> -Peptide Derivatives to Form Biofunctional, Supramolecular Nanofibers/Hydrogels and Their Potential Applications for Intracellular Imaging and Intratumoral Chemotherapy. Journal of the American Chemical Society, 2013, 135, 9907-9914.	13.7	226
56	Supramolecular hydrogels formed by the conjugates of nucleobases, Arg-Gly-Asp (RGD) peptides, and glucosamine. Soft Matter, 2012, 8, 7402.	2.7	42
57	Catalytic dephosphorylation of adenosine monophosphate (AMP) to form supramolecular nanofibers/hydrogels. Chemical Communications, 2012, 48, 2098.	4.1	34
58	Introducing <scp>d</scp> -Amino Acid or Simple Glycoside into Small Peptides to Enable Supramolecular Hydrogelators to Resist Proteolysis. Langmuir, 2012, 28, 13512-13517.	3.5	76
59	Magnetic nanoparticles for the manipulation of proteins and cells. Chemical Society Reviews, 2012, 41, 2912.	38.1	342
60	Photoinduced Tandem Reactions of Isoquinoline-1,3,4-trione with Alkynes To Build Aza-polycycles. Journal of Organic Chemistry, 2010, 75, 2989-3001.	3.2	39