Sugata Hazra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10383038/publications.pdf Version: 2024-02-01

<u> Sucata Hazda</u>

#	Article	IF	CITATIONS
1	Impact of high-fat diet on vasoconstrictor reactivity of white and brown adipose tissue resistance arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H485-H494.	3.2	8
2	Beneficial Effects of Angiotensin-(1–7) on CD34+ Cells From Patients With Heart Failure. Journal of Cardiovascular Pharmacology, 2018, 71, 155-159.	1.9	8
3	Loss of Angiotensin-Converting Enzyme 2 Exacerbates Diabetic Retinopathy by Promoting Bone Marrow Dysfunction. Stem Cells, 2018, 36, 1430-1440.	3.2	43
4	The Mechanism of Diabetic Retinopathy Pathogenesis Unifying Key Lipid Regulators, Sirtuin 1 and Liver X Receptor. EBioMedicine, 2017, 22, 181-190.	6.1	48
5	Experimental reduction of miR-92a mimics arterial aging. Experimental Gerontology, 2016, 83, 165-170.	2.8	23
6	miR-92a Corrects CD34+ Cell Dysfunction in Diabetes by Modulating Core Circadian Genes Involved in Progenitor Differentiation. Diabetes, 2015, 64, 4226-4237.	0.6	27
7	Vasoreparative Dysfunction of CD34+ Cells in Diabetic Individuals Involves Hypoxic Desensitization and Impaired Autocrine/Paracrine Mechanisms. PLoS ONE, 2014, 9, e93965.	2.5	54
8	The impact of ageing on adipose structure, function and vasculature in the B6D2F1 mouse: evidence of significant multisystem dysfunction. Journal of Physiology, 2014, 592, 4083-4096.	2.9	54
9	CNS Inflammation and Bone Marrow Neuropathy in Type 1 Diabetes. American Journal of Pathology, 2013, 183, 1608-1620.	3.8	53
10	Activation of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis Enhances the Reparative Function of Dysfunctional Diabetic Endothelial Progenitors. Diabetes, 2013, 62, 1258-1269.	0.6	91
11	N-3 Polyunsaturated Fatty Acids Prevent Diabetic Retinopathy by Inhibition of Retinal Vascular Damage and Enhanced Endothelial Progenitor Cell Reparative Function. PLoS ONE, 2013, 8, e55177.	2.5	79
12	Enhancing the Function of CD34+ Cells by Targeting Plasminogen Activator Inhibitor-1. PLoS ONE, 2013, 8, e79067.	2.5	12
13	Liver X Receptor Modulates Diabetic Retinopathy Outcome in a Mouse Model of Streptozotocin-Induced Diabetes. Diabetes, 2012, 61, 3270-3279.	0.6	62
14	Inhibition of Plasminogen Activator Inhibitor (PAI)-1 Corrects Diabetic CD34+ Dysfunction Blood, 2010, 116, 1601-1601.	1.4	1