## Barbara Caputo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1038013/publications.pdf Version: 2024-02-01



RADRADA CADUTO

| #  | Article                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Pixel-by-Pixel Cross-Domain Alignment for Few-Shot Semantic Segmentation. , 2022, , .                                                                                        |      | 11        |
| 2  | Domain Generalization through Audio-Visual Relative Norm Alignment in First Person Action Recognition. , 2022, , .                                                           |      | 15        |
| 3  | Test-Time Adaptation forÂEgocentric Action Recognition. Lecture Notes in Computer Science, 2022, ,<br>206-218.                                                               | 1.3  | 3         |
| 4  | A Contrastive Distillation Approach forÂIncremental Semantic Segmentation inÂAerial Images. Lecture<br>Notes in Computer Science, 2022, , 742-754.                           | 1.3  | 4         |
| 5  | Learning Semantics forÂVisual Place Recognition Through Multi-scale Attention. Lecture Notes in<br>Computer Science, 2022, , 454-466.                                        | 1.3  | 5         |
| 6  | MultiDIAL: Domain Alignment Layers for (Multisource) Unsupervised Domain Adaptation. IEEE<br>Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 4441-4452. | 13.9 | 10        |
| 7  | Inferring Latent Domains for Unsupervised Deep Domain Adaptation. IEEE Transactions on Pattern<br>Analysis and Machine Intelligence, 2021, 43, 485-498.                      | 13.9 | 17        |
| 8  | Self-Supervised Learning Across Domains. IEEE Transactions on Pattern Analysis and Machine<br>Intelligence, 2021, PP, 1-1.                                                   | 13.9 | 18        |
| 9  | Self-Supervised Joint Encoding of Motion and Appearance for First Person Action Recognition. , 2021, ,                                                                       |      | 5         |
| 10 | On the Challenges of Open World Recognition Under Shifting Visual Domains. IEEE Robotics and Automation Letters, 2021, 6, 604-611.                                           | 5.1  | 2         |
| 11 | N-ROD: a Neuromorphic Dataset for Synthetic-to-Real Domain Adaptation. , 2021, , .                                                                                           |      | 4         |
| 12 | DA4Event: Towards Bridging the Sim-to-Real Gap for Event Cameras Using Domain Adaptation. IEEE<br>Robotics and Automation Letters, 2021, 6, 6616-6623.                       | 5.1  | 8         |
| 13 | A Survey on Deep Visual Place Recognition. IEEE Access, 2021, 9, 19516-19547.                                                                                                | 4.2  | 76        |
| 14 | Unsupervised Domain Adaptation Through Inter-Modal Rotation for RGB-D Object Recognition. IEEE<br>Robotics and Automation Letters, 2020, 5, 6631-6638.                       | 5.1  | 17        |
| 15 | Boosting Deep Open World Recognition by Clustering. IEEE Robotics and Automation Letters, 2020, 5, 5985-5992.                                                                | 5.1  | 14        |
| 16 | IDDA: A Large-Scale Multi-Domain Dataset for Autonomous Driving. IEEE Robotics and Automation Letters, 2020, 5, 5526-5533.                                                   | 5.1  | 30        |
| 17 | Modeling the Background for Incremental Learning in Semantic Segmentation. , 2020, , .                                                                                       |      | 128       |
| 18 | Boosting binary masks for multi-domain learning through affine transformations. Machine Vision and Applications, 2020, 31, 1.                                                | 2.7  | 3         |

| #  | Article                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Gaze, visual, myoelectric, and inertial data of grasps for intelligent prosthetics. Scientific Data, 2020,<br>7, 43.                                  | 5.3 | 15        |
| 20 | Towards Recognizing Unseen Categories in Unseen Domains. Lecture Notes in Computer Science, 2020,<br>, 466-483.                                       | 1.3 | 32        |
| 21 | Recurrent Convolutional Fusion for RGB-D Object Recognition. IEEE Robotics and Automation Letters, 2019, 4, 2878-2885.                                | 5.1 | 24        |
| 22 | Knowledge is Never Enough: Towards Web Aided Deep Open World Recognition. , 2019, , .                                                                 |     | 17        |
| 23 | Hallucinating Agnostic Images to Generalize Across Domains. , 2019, , .                                                                               |     | 18        |
| 24 | Domain Generalization by Solving Jigsaw Puzzles. , 2019, , .                                                                                          |     | 389       |
| 25 | AdaGraph: Unifying Predictive and Continuous Domain Adaptation Through Graphs. , 2019, , .                                                            |     | 38        |
| 26 | Adding New Tasks to a Single Network with Weight Transformations Using Binary Masks. Lecture<br>Notes in Computer Science, 2019, , 180-189.           | 1.3 | 15        |
| 27 | Towards Multi-source Adaptive Semantic Segmentation. Lecture Notes in Computer Science, 2019, , 292-301.                                              | 1.3 | 10        |
| 28 | Domain Generalization with Domain-Specific Aggregation Modules. Lecture Notes in Computer Science, 2019, , 187-198.                                   | 1.3 | 34        |
| 29 | Looking beyond appearances: Synthetic training data for deep CNNs in re-identification. Computer<br>Vision and Image Understanding, 2018, 167, 50-62. | 4.7 | 116       |
| 30 | Robust Place Categorization With Deep Domain Generalization. IEEE Robotics and Automation Letters, 2018, 3, 2093-2100.                                | 5.1 | 36        |
| 31 | (DE)\$^2\$CO: Deep Depth Colorization. IEEE Robotics and Automation Letters, 2018, 3, 2386-2393.                                                      | 5.1 | 21        |
| 32 | From Source to Target and Back: Symmetric Bi-Directional Adaptive GAN. , 2018, , .                                                                    |     | 146       |
| 33 | Boosting Domain Adaptation by Discovering Latent Domains. , 2018, , .                                                                                 |     | 102       |
| 34 | Kitting in the Wild through Online Domain Adaptation. , 2018, , .                                                                                     |     | 37        |
| 35 | Adaptive Deep Learning Through Visual Domain Localization. , 2018, , .                                                                                |     | 16        |
| 36 | Best Sources Forward: Domain Generalization through Source-Specific Nets. , 2018, , .                                                                 |     | 59        |

Best Sources Forward: Domain Generalization through Source-Specific Nets. , 2018, , . 36

3

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Difficulty of Recognizing Grasps from sEMG during Activities of Daily Living. , 2018, , .                                                                                                               |     | 0         |
| 38 | Learning Deep NBNN Representations for Robust Place Categorization. IEEE Robotics and Automation Letters, 2017, 2, 1794-1801.                                                                               | 5.1 | 26        |
| 39 | On the Importance of Domain Adaptation in Texture Classification. Lecture Notes in Computer Science, 2017, , 380-390.                                                                                       | 1.3 | Ο         |
| 40 | Scalable greedy algorithms for transfer learning. Computer Vision and Image Understanding, 2017, 156, 174-185.                                                                                              | 4.7 | 8         |
| 41 | Adaptive learning to speed-up control of prosthetic hands: A few things everybody should know. ,<br>2017, 2017, 1130-1135.                                                                                  |     | 9         |
| 42 | Just DIAL: Domain Alignment Layers for Unsupervised Domain Adaptation. Lecture Notes in Computer Science, 2017, , 357-369.                                                                                  | 1.3 | 27        |
| 43 | Semi-automatic Training of an Object Recognition System in Scene Camera Data Using Gaze Tracking and Accelerometers. Lecture Notes in Computer Science, 2017, , 175-184.                                    | 1.3 | 5         |
| 44 | Effect of clinical parameters on the control of myoelectric robotic prosthetic hands. Journal of<br>Rehabilitation Research and Development, 2016, 53, 345-358.                                             | 1.6 | 49        |
| 45 | When NaÃ <sup>-</sup> ve Bayes Nearest Neighbors Meet Convolutional Neural Networks. , 2016, , .                                                                                                            |     | 15        |
| 46 | Learning the Roots of Visual Domain Shift. Lecture Notes in Computer Science, 2016, , 475-482.                                                                                                              | 1.3 | 17        |
| 47 | Where Are We After Five Editions?: Robot Vision Challenge, a Competition that Evaluates Solutions<br>for the Visual Place Classification Problem. IEEE Robotics and Automation Magazine, 2015, 22, 147-156. | 2.0 | 10        |
| 48 | Characterization of a Benchmark Database for Myoelectric Movement Classification. IEEE<br>Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 73-83.                                   | 4.9 | 193       |
| 49 | Transfer Learning Through Greedy Subset Selection. Lecture Notes in Computer Science, 2015, , 3-14.                                                                                                         | 1.3 | 9         |
| 50 | Towards Learning Free Naive Bayes Nearest Neighbor-Based Domain Adaptation. Lecture Notes in<br>Computer Science, 2015, , 320-331.                                                                          | 1.3 | 0         |
| 51 | Stable myoelectric control of a hand prosthesis using non-linear incremental learning. Frontiers in<br>Neurorobotics, 2014, 8, 8.                                                                           | 2.8 | 104       |
| 52 | Multi-source Adaptive Learning for Fast Control of Prosthetics Hand. , 2014, , .                                                                                                                            |     | 25        |
| 53 | Scene Recognition with Naive Bayes Non-linear Learning. , 2014, , .                                                                                                                                         |     | 6         |
| 54 | Classification of hand movements in amputated subjects by sEMG and accelerometers. , 2014, 2014, 3545-9.                                                                                                    |     | 31        |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Natural control capabilities of robotic hands by hand amputated subjects. , 2014, 2014, 4362-5.                                                                                                       |      | 5         |
| 56 | Learning to Learn, from Transfer Learning to Domain Adaptation: A Unifying Perspective. , 2014, , .                                                                                                   |      | 77        |
| 57 | Learning Categories From Few Examples With Multi Model Knowledge Transfer. IEEE Transactions on<br>Pattern Analysis and Machine Intelligence, 2014, 36, 928-941.                                      | 13.9 | 142       |
| 58 | ImageCLEF 2014: Overview and Analysis of the Results. Lecture Notes in Computer Science, 2014, ,<br>192-211.                                                                                          | 1.3  | 44        |
| 59 | Movement Error Rate for Evaluation of Machine Learning Methods for sEMC-Based Hand Movement<br>Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 735-744. | 4.9  | 149       |
| 60 | Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Scientific Data, 2014, 1, 140053.                                                                                | 5.3  | 482       |
| 61 | Improving Control of Dexterous Hand Prostheses Using Adaptive Learning. IEEE Transactions on Robotics, 2013, 29, 207-219.                                                                             | 10.3 | 70        |
| 62 | From N to N+1: Multiclass Transfer Incremental Learning. , 2013, , .                                                                                                                                  |      | 75        |
| 63 | Exploiting accelerometers to improve movement classification for prosthetics. , 2013, 2013, 6650476.                                                                                                  |      | 23        |
| 64 | ImageCLEF 2013: The Vision, the Data and the Open Challenges. Lecture Notes in Computer Science, 2013, , 250-268.                                                                                     | 1.3  | 18        |
| 65 | Frustratingly Easy NBNN Domain Adaptation. , 2013, , .                                                                                                                                                |      | 55        |
| 66 | Beyond Dataset Bias: Multi-task Unaligned Shared Knowledge Transfer. Lecture Notes in Computer<br>Science, 2013, , 1-15.                                                                              | 1.3  | 11        |
| 67 | On the challenge of classifying 52 hand movements from surface electromyography. , 2012, 2012, 4931-7.                                                                                                |      | 84        |
| 68 | Building the Ninapro database: A resource for the biorobotics community. , 2012, , .                                                                                                                  |      | 161       |
| 69 | Leveraging over prior knowledge for online learning of visual categories. , 2012, , .                                                                                                                 |      | 11        |
| 70 | Indoor Scene Recognition using Task and Saliency-driven Feature Pooling. , 2012, , .                                                                                                                  |      | 8         |
| 71 | DIRAC: Detection and Identification of Rare Audio-Visual Events. Studies in Computational Intelligence, 2012, , 3-35.                                                                                 | 0.9  | 0         |
| 72 | Towards a Quantitative Measure of Rareness. Studies in Computational Intelligence, 2012, , 129-136.                                                                                                   | 0.9  | 0         |

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Towards semi-supervised learning of semantic spatial concepts. , 2011, , .                                                                                          |     | 6         |
| 74 | Using Object Affordances to Improve Object Recognition. IEEE Transactions on Autonomous Mental Development, 2011, 3, 207-215.                                       | 1.6 | 60        |
| 75 | Transferring activities: Updating human behavior analysis. , 2011, , .                                                                                              |     | 14        |
| 76 | Multiclass transfer learning from unconstrained priors. , 2011, , .                                                                                                 |     | 77        |
| 77 | A Large-Scale Database of Images and Captions for Automatic Face Naming. , 2011, , .                                                                                |     | 5         |
| 78 | The more you learn, the less you store: Memory-controlled incremental SVM for visual place recognition. Image and Vision Computing, 2010, 28, 1080-1097.            | 4.5 | 35        |
| 79 | On-line independent support vector machines. Pattern Recognition, 2010, 43, 1402-1412.                                                                              | 8.1 | 57        |
| 80 | Guest Editorial Representations and Architectures for Cognitive Systems. IEEE Transactions on Autonomous Mental Development, 2010, 2, 265-266.                      | 1.6 | 1         |
| 81 | Learning methods for melanoma recognition. International Journal of Imaging Systems and Technology, 2010, 20, 316-322.                                              | 4.1 | 11        |
| 82 | A realistic benchmark for visual indoor place recognition. Robotics and Autonomous Systems, 2010, 58, 81-96.                                                        | 5.1 | 44        |
| 83 | Classifying materials in the real world. Image and Vision Computing, 2010, 28, 150-163.                                                                             | 4.5 | 90        |
| 84 | Multi-modal Semantic Place Classification. International Journal of Robotics Research, 2010, 29, 298-320.                                                           | 8.5 | 121       |
| 85 | Object recognition using visuo-affordance maps. , 2010, , .                                                                                                         |     | 4         |
| 86 | Safety in numbers: Learning categories from few examples with multi model knowledge transfer. ,<br>2010, , .                                                        |     | 147       |
| 87 | Overview of the First Workshop on Medical Content–Based Retrieval for Clinical Decision Support at<br>MICCAI 2009. Lecture Notes in Computer Science, 2010, , 1-17. | 1.3 | 9         |
| 88 | Online-batch strongly convex Multi Kernel Learning. , 2010, , .                                                                                                     |     | 35        |
| 89 | OM-2: An online multi-class Multi-Kernel Learning algorithm Luo Jie. , 2010, , .                                                                                    |     | 7         |
| 90 | An Online Framework for Learning Novel Concepts over Multiple Cues. Lecture Notes in Computer<br>Science, 2010, , 269-280.                                          | 1.3 | 8         |

| #   | Article                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The Robot Vision Task. The Kluwer International Series on Information Retrieval, 2010, , 185-198.                                             | 1.0 | 5         |
| 92  | Overview of the CLEF 2009 Robot Vision Track. Lecture Notes in Computer Science, 2010, , 110-119.                                             | 1.3 | 12        |
| 93  | Overview of the ImageCLEF@ICPR 2010 Robot Vision Track. Lecture Notes in Computer Science, 2010, , 171-179.                                   | 1.3 | 5         |
| 94  | COLD: The CoSy Localization Database. International Journal of Robotics Research, 2009, 28, 588-594.                                          | 8.5 | 109       |
| 95  | You live, you learn, you forget: Continuous learning of visual places with a forgetting mechanism. , 2009, , .                                |     | 4         |
| 96  | Model adaptation with least-squares SVM for adaptive hand prosthetics. , 2009, , .                                                            |     | 54        |
| 97  | A theoretical framework for transfer of knowledge across modalities in artificial and biological systems. , 2009, , .                         |     | 3         |
| 98  | An SVM Confidence-Based Approach to Medical Image Annotation. Lecture Notes in Computer Science, 2009, , 696-703.                             | 1.3 | 8         |
| 99  | The more you know, the less you learn: from knowledge transfer to one-shot learning of object categories. , 2009, , .                         |     | 49        |
| 100 | Towards a Theoretical Framework for Learning Multi-modal Patterns for Embodied Agents. Lecture<br>Notes in Computer Science, 2009, , 239-248. | 1.3 | 3         |
| 101 | Discriminative cue integration for medical image annotation. Pattern Recognition Letters, 2008, 29, 1996-2002.                                | 4.2 | 68        |
| 102 | Towards robust place recognition for robot localization. , 2008, , .                                                                          |     | 63        |
| 103 | The projectron. , 2008, , .                                                                                                                   |     | 71        |
| 104 | SVM-based discriminative accumulation scheme for place recognition. , 2008, , .                                                               |     | 37        |
| 105 | The DIRAC AWEAR audio-visual platform for detection of unexpected and incongruent events. , 2008, , .                                         |     | 2         |
| 106 | Object Category Detection Using Audio-Visual Cues. , 2008, , 539-548.                                                                         |     | 2         |
| 107 | Cue Integration for Medical Image Annotation. Lecture Notes in Computer Science, 2008, , 577-584.                                             | 1.3 | 1         |
|     |                                                                                                                                               |     |           |

108 Confidence-based cue integration for visual place recognition. , 2007, , .

42

| #   | Article                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Incremental learning for place recognition in dynamic environments. , 2007, , .                                                       |     | 67        |
| 110 | Local velocity-adapted motion events for spatio-temporal recognition. Computer Vision and Image<br>Understanding, 2007, 108, 207-229. | 4.7 | 118       |
| 111 | A spin glass model of a Markov random field. International Journal of Imaging Systems and Technology, 2006, 16, 181-188.              | 4.1 | 2         |
| 112 | A Discriminative Approach to Robust Visual Place Recognition. , 2006, , .                                                             |     | 67        |
| 113 | Integrating representative and discriminant models for object category detection. , 2005, , .                                         |     | 86        |
| 114 | Class-specific material categorisation. , 2005, , .                                                                                   |     | 186       |
| 115 | On the Significance of Real-World Conditions for Material Classification. Lecture Notes in Computer Science, 2004, , 253-266.         | 1.3 | 182       |
| 116 | Recognizing human actions: a local SVM approach. , 2004, , .                                                                          |     | 2,346     |
| 117 | <title>Digital mammography: a weak continuity texture representation for detection of microcalcifications</title> ., 2001, , .        |     | 0         |