Xiaoqing Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/103795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lightâ€Rewritable Logic Devices Based on Van der Waals Heterostructures. Advanced Electronic Materials, 2022, 8, 2100708.	5.1	5
2	Investigation of grouting diffusion in a single rock fracture considering the influences of obstructions. Canadian Geotechnical Journal, 2022, 59, 1114-1129.	2.8	2
3	The impact of Ga and S concentration and gradient in Cu(In,Ga)(Se,S)2 solar cells. Optical Materials, 2022, 126, 112143.	3.6	3
4	Toward Efficiency Limits of Crystalline Silicon Solar Cells: Recent Progress in Highâ€Efficiency Silicon Heterojunction Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	41
5	Dual Optimization of Bulk and Surface via Guanidine Halide for Efficient and Stable 2D/3D Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	30
6	Toward Efficiency Limits of Crystalline Silicon Solar Cells: Recent Progress in Highâ€Efficiency Silicon Heterojunction Solar Cells (Adv. Energy Mater. 23/2022). Advanced Energy Materials, 2022, 12, .	19.5	5
7	Rapid degradation behavior of encapsulated perovskite solar cells under light, bias voltage or heat fields. Nanoscale Advances, 2021, 3, 6128-6137.	4.6	15
8	Modification of graphene photodetector by TiO2 prepared by oxygen plasma. Journal of Materials Science, 2021, 56, 10938-10946.	3.7	4
9	High performance sub-bandgap photodetection <i>via</i> internal photoemission based on ideal metal/2D-material van der Waals Schottky interface. Nanoscale, 2021, 13, 16448-16456.	5.6	14
10	Carrier mobility tuning of MoS2 by strain engineering in CVD growth process. Nano Research, 2021, 14, 2314.	10.4	27
11	Improved efficiency and stability of flexible perovskite solar cells by a new spacer cation additive. RSC Advances, 2021, 11, 33637-33645.	3.6	6
12	Transition metal dichalcogenides thyristor realized by solid ionic conductor gate induced doping. Applied Physics Letters, 2020, 117, 053102.	3.3	2
13	Strain Effect Enhanced Ultrasensitive MoS ₂ Nanoscroll Avalanche Photodetector. Journal of Physical Chemistry Letters, 2020, 11, 4490-4497.	4.6	23
14	Photoelectric properties of quasi one-dimensional layered KP15. Materials Letters, 2020, 272, 127826.	2.6	1
15	Nanoscrolls: Highâ€Performance Photodiode Based on Atomically Thin WSe ₂ /MoS ₂ Nanoscroll Integration (Small 30/2019). Small, 2019, 15, 1970160.	10.0	3
16	Effect of Light and Voltage on Electrochemical Impedance Spectroscopy of Perovskite Solar Cells: An Empirical Approach Based on Modified Randles Circuit. Journal of Physical Chemistry C, 2019, 123, 3968-3978.	3.1	48
17	Highâ€Performance Photodiode Based on Atomically Thin WSe ₂ /MoS ₂ Nanoscroll Integration. Small, 2019, 15, e1901544.	10.0	44
18	Self-powered and fast photodetector based on graphene/MoSe2/Au heterojunction. Superlattices and Microstructures, 2019, 130, 87-92.	3.1	34

XIAOQING CHEN

#	Article	IF	CITATIONS
19	Enhanced Performance of a CVD MoS ₂ Photodetector by Chemical in Situ n-Type Doping. ACS Applied Materials & Interfaces, 2019, 11, 11636-11644.	8.0	82
20	Impedance Spectroscopy with Variable Voltages and Illuminations to Reveal Recombination Routes of Free Carriers in Perovskite Solar Cells. , 2019, , .		1
21	A tunable floating-base bipolar transistor based on a 2D material homojunction realized using a solid ionic dielectric material. Nanoscale, 2019, 11, 22531-22538.	5.6	7
22	Coulomb effect induced intrinsic degradation in OLED. Organic Electronics, 2019, 65, 370-374.	2.6	4
23	Field-dependent, organics assistant filamentary mechanism in both vertical and planar organic memories. Organic Electronics, 2018, 53, 83-87.	2.6	1
24	Charge Generation via Relaxed Charge-Transfer States in Organic Photovoltaics by an Energy-Disorder-Driven Entropy Gain. Journal of Physical Chemistry C, 2018, 122, 12640-12646.	3.1	24
25	Photocarrier dynamics in perovskite-based solar cells revealed by intensity-modulated photovoltage spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 17918-17926.	2.8	16
26	Transient Extraction of Holes and Electrons Separately Unveils the Transport Dynamics in Organic Photovoltaics. Advanced Electronic Materials, 2016, 2, 1500333.	5.1	17
27	Two-peak capacitance–voltage behavior in devices based on electron transport materials. Organic Electronics, 2016, 28, 239-243.	2.6	15
28	Correlating Molecular Structures with Transport Dynamics in High-Efficiency Small-Molecule Organic Photovoltaics. ACS Applied Materials & Interfaces, 2015, 7, 13137-13141.	8.0	15
29	Efficient and Balanced Charge Transport Revealed in Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 4471-4475.	8.0	131
30	Study on the basic capacitance–voltage characteristics of organic molecular semiconductors. Organic Electronics, 2015, 21, 73-77.	2.6	21
31	High-bandwidth, high-sampling-rate, low-noise, two-probe transient photovoltage measuring system. Review of Scientific Instruments, 2015, 86, 013905.	1.3	6
32	TOP-electrode-eliminated organic bi-stable devices and their two switching modes in different atmospheres. Organic Electronics, 2015, 22, 127-131.	2.6	5
33	Tunable Exciton Dissociation at the Organic/Metal Electrode Interface. Journal of Physical Chemistry C, 2015, 119, 7039-7046.	3.1	2
34	Small-molecule solar cells with efficiency over 9%. Nature Photonics, 2015, 9, 35-41.	31.4	769
35	Separation of Four Compounds fromForsythia suspensaby Counter-Current Chromatography with Stepwise Elution. Separation Science and Technology, 2014, 49, 2098-2104.	2.5	2
36	Transient photovoltage study on the dynamics of excitons and carriers in tris-(8-hydroxyquinolinato)aluminum. Journal of Applied Physics, 2014, 116, 153704.	2.5	3

#	Article	IF	CITATIONS
37	Buffer-enhanced electron injection in organic light-emitting devices with copper cathode. Organic Electronics, 2013, 14, 511-515.	2.6	11
38	Photoinduced charge injection in the metal/organic interface studied by transient photovoltage measurements with bias. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2012-2015.	5.1	2
39	Abnormal Temperature-Dependent Electron Transport in Hole Transport Material <i>N</i> , <i>N</i> â€2-Diphenyl- <i>N</i> , <i>N</i> â€2-bis(3- methylphenyl)-[1,1â€2-biphenyl]-4,4â€2-diamine (TPD of Physical Chemistry C, 2013, 117, 9143-9147.).3aurnal	2
40	Insertion of parylene-N films in electron transport layer: An effective approach for efficiency improvement of organic light emitting diodes. Journal of Applied Physics, 2012, 112, 104505.	2.5	1
41	Electrorheological fluid-actuated microfluidic pump. Applied Physics Letters, 2006, 89, 083505.	3.3	39