Mari Iida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1037941/publications.pdf

Version: 2024-02-01

713013 566801 1,049 19 15 21 citations h-index g-index papers 22 22 22 2224 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	AXL regulates neuregulin1 expression leading to cetuximab resistance in head and neck cancer. BMC Cancer, 2022, 22, 447.	1.1	4
2	Contribution of toxicologic pathologists for the safety of human health in biomedical researchâ€"past, present, and future of the JSTP. Journal of Toxicologic Pathology, 2021, 34, 275-282.	0.3	1
3	Blocking Y-Box Binding Protein-1 through Simultaneous Targeting of PI3K and MAPK in Triple Negative Breast Cancers. Cancers, 2020, 12, 2795.	1.7	14
4	Activation of EPHA2-ROBO1 Heterodimer by SLIT2 Attenuates Non-canonical Signaling and Proliferation in Squamous Cell Carcinomas. IScience, 2020, 23, 101692.	1.9	9
5	AXL Mediates Cetuximab and Radiation Resistance Through Tyrosine 821 and the c-ABL Kinase Pathway in Head and Neck Cancer. Clinical Cancer Research, 2020, 26, 4349-4359.	3.2	26
6	Overcoming Resistance to Cetuximab with Honokiol, A Small-Molecule Polyphenol. Molecular Cancer Therapeutics, 2018, 17, 204-214.	1.9	18
7	MERTK Mediates Intrinsic and Adaptive Resistance to AXL-targeting Agents. Molecular Cancer Therapeutics, 2018, 17, 2297-2308.	1.9	36
8	Cotargeting mTORC and EGFR Signaling as a Therapeutic Strategy in HNSCC. Molecular Cancer Therapeutics, 2017, 16, 1257-1268.	1.9	32
9	Akt1 and Akt3 but not Akt2 through interaction with DNA-PKcs stimulate proliferation and post-irradiation cell survival of K-RAS-mutated cancer cells. Cell Death Discovery, 2017, 3, 17072.	2.0	35
10	Targeting the HER Family with Pan-HER Effectively Overcomes Resistance to Cetuximab. Molecular Cancer Therapeutics, 2016, 15, 2175-2186.	1.9	36
11	Adaptive responses to antibody based therapy. Seminars in Cell and Developmental Biology, 2016, 50, 153-163.	2.3	5
12	Dual targeting of PI3K and MEK enhances the radiation response of <i>K-RAS</i> mutated non-small cell lung cancer. Oncotarget, 2016, 7, 43746-43761.	0.8	28
13	AXL Is a Logical Molecular Target in Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2015, 21, 2601-2612.	3.2	94
14	Overcoming acquired resistance to cetuximab by dual targeting HER family receptors with antibody-based therapy. Molecular Cancer, 2014, 13, 242.	7.9	53
15	AXL Mediates Resistance to Cetuximab Therapy. Cancer Research, 2014, 74, 5152-5164.	0.4	170
16	Sym004, a Novel EGFR Antibody Mixture, Can Overcome Acquired Resistance to Cetuximab. Neoplasia, 2013, 15, 1196-1206.	2.3	61
17	Nuclear EGFR as a molecular target in cancer. Radiotherapy and Oncology, 2013, 108, 370-377.	0.3	189
18	Targeting AKT with the allosteric AKT inhibitor MK-2206 in non-small cell lung cancer cells with acquired resistance to cetuximab. Cancer Biology and Therapy, 2013, 14, 481-491.	1.5	43

#	Article	lF	CITATIONS
19	The nuclear epidermal growth factor receptor signaling network and its role in cancer. Discovery Medicine, 2011, 12, 419-32.	0.5	150