Jeffrey N Weiser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1037914/publications.pdf

Version: 2024-02-01

152	16,284	68 h-index	121
papers	citations		g-index
163	163	163	14297
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Serotype-Dependent Effects on the Dynamics of Pneumococcal Colonization and Implications for Transmission. MBio, 2022, 13, e0015822.	1.8	11
2	Episodic Aspiration with Oral Commensals Induces a MyD88-dependent, Pulmonary T-Helper Cell Type 17 Response that Mitigates Susceptibility to <i>Streptococcus pneumoniae</i> Respiratory and Critical Care Medicine, 2021, 203, 1099-1111.	2.5	55
3	Type I Interferon Signaling Is a Common Factor Driving Streptococcus pneumoniae and Influenza A Virus Shedding and Transmission. MBio, 2021, 12 , .	1.8	23
4	Exposure to Cigarette Smoke Enhances Pneumococcal Transmission Among Littermates in an Infant Mouse Model. Frontiers in Cellular and Infection Microbiology, 2021, 11, 651495.	1.8	8
5	Antibody isotype diversity against SARS-CoV-2 is associated with differential serum neutralization capacities. Scientific Reports, 2021, 11, 5538.	1.6	37
6	Neuraminidase B controls neuraminidase A-dependent mucus production and evasion. PLoS Pathogens, 2021, 17, e1009158.	2.1	15
7	Decreased production of epithelial-derived antimicrobial molecules at mucosal barriers during early life. Mucosal Immunology, 2021, 14, 1358-1368.	2.7	9
8	Pneumococcal capsule blocks protection by immunization with conserved surface proteins. Npj Vaccines, 2021, 6, 155.	2.9	14
9	Pneumolysin Induces 12-Lipoxygenase–Dependent Neutrophil Migration duringStreptococcus pneumoniaeInfection. Journal of Immunology, 2020, 204, 101-111.	0.4	16
10	Immune exclusion by naturally acquired secretory IgA against pneumococcal pilus-1. Journal of Clinical Investigation, 2020, 130, 927-941.	3.9	31
11	Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Research, 2019, 29, 304-316.	2.4	258
12	Identification of Pneumococcal Factors Affecting Pneumococcal Shedding Shows that the $\mbox{\ensuremath{\mbox{olf}}}\e$	1.8	25
13	Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis. Nature Communications, 2019, 10, 2176.	5.8	83
14	Regenerative therapy based on miRNA-302 mimics for enhancing host recovery from pneumonia caused by <i>Streptococcus pneumoniae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8493-8498.	3.3	21
15	Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1745-1754.	3.3	59
16	Pneumococcal quorum sensing drives an asymmetric owner–intruder competitive strategy during carriage via the competence regulon. Nature Microbiology, 2019, 4, 198-208.	5.9	43
17	The neonatal window of opportunity—early priming for life. Journal of Allergy and Clinical Immunology, 2018, 141, 1212-1214.	1.5	87
18	Capsule Prolongs Survival of Streptococcus pneumoniae during Starvation. Infection and Immunity, 2018, 86, .	1.0	25

#	Article	IF	CITATIONS
19	Streptococcus pneumoniae: transmission, colonization and invasion. Nature Reviews Microbiology, 2018, 16, 355-367.	13.6	636
20	An Infant Mouse Model of Influenza Virus Transmission Demonstrates the Role of Virus-Specific Shedding, Humoral Immunity, and Sialidase Expression by Colonizing Streptococcus pneumoniae. MBio, 2018, 9, .	1.8	25
21	Age-related differences in IL-1 signaling and capsule serotype affect persistence of Streptococcus pneumoniae colonization. PLoS Pathogens, 2018, 14, e1007396.	2.1	21
22	pyseer: a comprehensive tool for microbial pangenome-wide association studies. Bioinformatics, 2018, 34, 4310-4312.	1.8	208
23	Host-to-Host Transmission of Streptococcus pneumoniae Is Driven by Its Inflammatory Toxin, Pneumolysin. Cell Host and Microbe, 2017, 21, 73-83.	5.1	108
24	Capsule Type and Amount Affect Shedding and Transmission of $\mbox{\ensuremath{\mbox{\scriptsize i}}}\mbox{Streptococcus pneumoniae}\mbox{\ensuremath{\mbox{\scriptsize i}}}\mbox{\ensuremath{\mbox{\scriptsize }}}\mbox{\ensuremath{\mbox{\scriptsize }}}\m$	1.8	58
25	Streptococcus pneumoniae Transmission Is Blocked by Type-Specific Immunity in an Infant Mouse Model. MBio, 2017, 8, .	1.8	17
26	The immunological mechanisms that control pneumococcal carriage. PLoS Pathogens, 2017, 13, e1006665.	2.1	69
27	Infant Mouse Model for the Study of Shedding and Transmission during Streptococcus pneumoniae Monoinfection. Infection and Immunity, 2016, 84, 2714-2722.	1.0	59
28	Peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at homeostasis. Blood, 2016, 127, 2460-2471.	0.6	88
29	Single Cell Bottlenecks in the Pathogenesis of Streptococcus pneumoniae. PLoS Pathogens, 2016, 12, e1005887.	2.1	64
30	Macrophage Migration Inhibitory Factor Is Detrimental in Pneumococcal Pneumonia and a Target for Therapeutic Immunomodulation. Journal of Infectious Diseases, 2015, 212, 1677-1682.	1.9	30
31	Degradation Products of the Extracellular Pathogen Streptococcus pneumoniae Access the Cytosol via Its Pore-Forming Toxin. MBio, 2015, 6, .	1.8	41
32	Sensing of Interleukin-1 Cytokines during Streptococcus pneumoniae Colonization Contributes to Macrophage Recruitment and Bacterial Clearance. Infection and Immunity, 2015, 83, 3204-3212.	1.0	44
33	Mechanisms of Bacterial Colonization of the Respiratory Tract. Annual Review of Microbiology, 2015, 69, 425-444.	2.9	154
34	Bacterial exploitation of phosphorylcholine mimicry suppresses inflammation to promote airway infection. Journal of Clinical Investigation, 2015, 125, 3878-3890.	3.9	26
35	Clearance of Pneumococcal Colonization in Infants Is Delayed through Altered Macrophage Trafficking. PLoS Pathogens, 2015, 11, e1005004.	2.1	31
36	Mechanisms of Carriage. , 2014, , 169-182.		2

#	Article	IF	Citations
37	Phase Variation of Streptococcus pneumoniae. , 2014, , 268-274.		3
38	Unravelling the Multiple Functions of the Architecturally Intricate Streptococcus pneumoniae \hat{l}^2 -galactosidase, BgaA. PLoS Pathogens, 2014, 10, e1004364.	2.1	49
39	TLR2 Signaling Decreases Transmission of Streptococcus pneumoniae by Limiting Bacterial Shedding in an Infant Mouse Influenza A Co-infection Model. PLoS Pathogens, 2014, 10, e1004339.	2.1	63
40	Shielding of a Lipooligosaccharide IgM Epitope Allows Evasion of Neutrophil-Mediated Killing of an Invasive Strain of Nontypeable Haemophilus influenzae. MBio, 2014, 5, e01478-14.	1.8	35
41	Binding of human factor <scp>H</scp> to outer membrane protein <scp>P</scp> 5 of nonâ€typeable <scp><i>H</i></scp> <i>aemophilus influenzae</i> Microbiology, 2014, 94, 89-106.	1.2	38
42	Tolerance of a Phage Element by Streptococcus pneumoniae Leads to a Fitness Defect during Colonization. Journal of Bacteriology, 2014, 196, 2670-2680.	1.0	24
43	Pneumolysin expression by streptococcus pneumoniae protects colonized mice from influenza virus-induced disease. Virology, 2014, 462-463, 254-265.	1.1	21
44	Influenza Promotes Pneumococcal Growth during Coinfection by Providing Host Sialylated Substrates as a Nutrient Source. Cell Host and Microbe, 2014, 16, 55-67.	5.1	209
45	Coinfection with Streptococcus pneumoniae Modulates the B Cell Response to Influenza Virus. Journal of Virology, 2014, 88, 11995-12005.	1.5	27
46	The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nature Medicine, 2014, 20, 524-530.	15.2	438
47	Macrophage Migration Inhibitory Factor Promotes Clearance of Pneumococcal Colonization. Journal of Immunology, 2014, 193, 764-772.	0.4	33
48	MARCO Is Required for TLR2- and Nod2-Mediated Responses to <i>Streptococcus pneumoniae</i> and Clearance of Pneumococcal Colonization in the Murine Nasopharynx. Journal of Immunology, 2013, 190, 250-258.	0.4	103
49	The battle with the host over microbial size. Current Opinion in Microbiology, 2013, 16, 59-62.	2.3	25
50	Microbial Modulation of Host Immunity with the Small Molecule Phosphorylcholine. Infection and Immunity, 2013, 81, 392-401.	1.0	74
51	Evasion of killing by human antibody and complement through multiple variations in the surface oligosaccharide of <i><scp>H</scp>aemophilus influenzae</i> . Molecular Microbiology, 2013, 88, 603-618.	1.2	39
52	Phosphorylcholine Allows for Evasion of Bactericidal Antibody by Haemophilus influenzae. PLoS Pathogens, 2012, 8, e1002521.	2.1	64
53	Interaction of Lipocalin 2, Transferrin, and Siderophores Determines the Replicative Niche of Klebsiella pneumoniae during Pneumonia. MBio, 2012, 3, .	1.8	116
54	Protection from the acquisition of <i>Staphylococcus aureus</i> nasal carriage by cross-reactive antibody to a pneumococcal dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13823-13828.	3.3	39

#	Article	IF	CITATIONS
55	Increased Chain Length Promotes Pneumococcal Adherence and Colonization. Infection and Immunity, 2012, 80, 3454-3459.	1.0	65
56	Pneumococcal Surface Protein A Inhibits Complement Deposition on the Pneumococcal Surface by Competing with the Binding of C-Reactive Protein to Cell-Surface Phosphocholine. Journal of Immunology, 2012, 189, 5327-5335.	0.4	86
57	Co-infection subverts mucosal immunity in the upper respiratory tract. Current Opinion in Immunology, 2012, 24, 417-423.	2.4	55
58	Modifications to the Peptidoglycan Backbone Help Bacteria To Establish Infection. Infection and Immunity, 2011, 79, 562-570.	1.0	169
59	Invasive Bacterial Pathogens Exploit TLR-Mediated Downregulation of Tight Junction Components to Facilitate Translocation across the Epithelium. Cell Host and Microbe, 2011, 9, 404-414.	5.1	102
60	Minimization of Bacterial Size Allows for Complement Evasion and Is Overcome by the Agglutinating Effect of Antibody. Cell Host and Microbe, 2011, 10, 486-496.	5.1	112
61	Conserved Mutations in the Pneumococcal Bacteriocin Transporter Gene, <i>blpA</i> , Result in a Complex Population Consisting of Producers and Cheaters. MBio, 2011, 2, .	1.8	70
62	Intracellular sensors of extracellular bacteria. Immunological Reviews, 2011, 243, 9-25.	2.8	50
63	Inhibition of the Pneumococcal Virulence Factor StrH and Molecular Insights into N-Glycan Recognition and Hydrolysis. Structure, 2011, 19, 1603-1614.	1.6	38
64	Klebsiella pneumoniae Yersiniabactin Promotes Respiratory Tract Infection through Evasion of Lipocalin 2. Infection and Immunity, 2011, 79, 3309-3316.	1.0	227
65	Nod2 sensing of lysozyme-digested peptidoglycan promotes macrophage recruitment and clearance of S. pneumoniae colonization in mice. Journal of Clinical Investigation, 2011, 121, 3666-3676.	3.9	169
66	Synergistic stimulation of type I interferons during influenza virus coinfection promotes Streptococcus pneumoniae colonization in mice. Journal of Clinical Investigation, 2011, 121, 3657-3665.	3.9	246
67	The pneumococcus: why a commensal misbehaves. Journal of Molecular Medicine, 2010, 88, 97-102.	1.7	147
68	Within-Host Competition Drives Selection for the Capsule Virulence Determinant of Streptococcus pneumoniae. Current Biology, 2010, 20, 1222-1226.	1.8	89
69	Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nature Medicine, 2010, 16, 228-231.	15.2	966
70	The Effects of PspC on Complement-Mediated Immunity to <i>Streptococcus pneumoniae</i> Vary with Strain Background and Capsular Serotype. Infection and Immunity, 2010, 78, 283-292.	1.0	41
71	Three Surface Exoglycosidases from Streptococcus pneumoniae, NanA, BgaA, and StrH, Promote Resistance to Opsonophagocytic Killing by Human Neutrophils. Infection and Immunity, 2010, 78, 2108-2116.	1.0	111
72	Identification of the Targets of Cross-Reactive Antibodies Induced by <i>Streptococcus pneumoniae </i> /i>Colonization. Infection and Immunity, 2010, 78, 2231-2239.	1.0	21

#	Article	IF	CITATIONS
73	<i>Streptococcus pneumoniae</i> Resistance to Complement-Mediated Immunity Is Dependent on the Capsular Serotype. Infection and Immunity, 2010, 78, 716-725.	1.0	103
74	Natural Antibody to Conserved Targets of <i>Haemophilus influenzae </i> Limits Colonization of the Murine Nasopharynx. Infection and Immunity, 2009, 77, 3458-3465.	1.0	19
75	Human Neutrophils Kill <i>Streptococcus pneumoniae</i> via Serine Proteases. Journal of Immunology, 2009, 183, 2602-2609.	0.4	179
76	Mucosal Lipocalin 2 Has Pro-Inflammatory and Iron-Sequestering Effects in Response to Bacterial Enterobactin. PLoS Pathogens, 2009, 5, e1000622.	2.1	148
77	Bacteriocin Activity of Streptococcus pneumoniae Is Controlled by the Serine Protease HtrA via Posttranscriptional Regulation. Journal of Bacteriology, 2009, 191, 1509-1518.	1.0	41
78	Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. Journal of Clinical Investigation, 2009, 119, 1899-909.	3.9	381
79	Early Bacterial Colonization Induces Toll-Like Receptor-Dependent Transforming Growth Factor \hat{l}^2 Signaling in the Epithelium. Infection and Immunity, 2009, 77, 2212-2220.	1.0	41
80	The transfer of choline from the host to the bacterial cell surface requires glpQ in Haemophilus influenzae. Molecular Microbiology, 2008, 41, 1029-1036.	1.2	62
81	The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nature Reviews Microbiology, 2008, 6, 288-301.	13.6	1,002
82	Neutrophil-Toxin Interactions Promote Antigen Delivery and Mucosal Clearance of <i>Streptococcus pneumoniae </i> . Journal of Immunology, 2008, 180, 6246-6254.	0.4	66
83	Mucosal Clearance of Capsule-Expressing Bacteria Requires Both TLR and Nucleotide-Binding Oligomerization Domain 1 Signaling. Journal of Immunology, 2008, 181, 7909-7916.	0.4	29
84	Resistance to Mucosal Lysozyme Compensates for the Fitness Deficit of Peptidoglycan Modifications by Streptococcus pneumoniae. PLoS Pathogens, 2008, 4, e1000241.	2.1	86
85	Impact of the Molecular Form of Immunoglobulin A on Functional Activity in Defense against Streptococcus pneumoniae. Infection and Immunity, 2007, 75, 1801-1810.	1.0	40
86	Interleukin-8 Secretion in Response to Aferric Enterobactin Is Potentiated by Siderocalin. Infection and Immunity, 2007, 75, 3160-3168.	1.0	30
87	Capsule Enhances Pneumococcal Colonization by Limiting Mucus-Mediated Clearance. Infection and Immunity, 2007, 75, 83-90.	1.0	264
88	Role of p38 MAP Kinase and Transforming Growth Factor-Î ² Signaling in Transepithelial Migration of Invasive Bacterial Pathogens. Journal of Biological Chemistry, 2007, 282, 28700-28708.	1.6	51
89	Nod1 Signaling Overcomes Resistance of S. pneumoniae to Opsonophagocytic Killing. PLoS Pathogens, 2007, 3, e118.	2.1	72
90	The blp Bacteriocins of Streptococcus pneumoniae Mediate Intraspecies Competition both In Vitro and In Vivo. Infection and Immunity, 2007, 75, 443-451.	1.0	190

#	Article	lF	Citations
91	Effect of Pneumococcal Polysaccharide Vaccine on Nonbacteremic Pneumococcal Pneumonia. Clinical Infectious Diseases, 2007, 44, 1139-1140.	2.9	О
92	Identifying Mutator Phenotypes among Fluoroquinolone-Resistant Strains of Streptococcus pneumoniae Using Fluctuation Analysis. Antimicrobial Agents and Chemotherapy, 2007, 51, 3225-3229.	1.4	29
93	Live Attenuated Streptococcus pneumoniae Strains Induce Serotype-Independent Mucosal and Systemic Protection in Mice. Infection and Immunity, 2007, 75, 2469-2475.	1.0	95
94	Nod1 mediates cytoplasmic sensing of combinations of extracellular bacteria. Cellular Microbiology, 2007, 9, 1343-1351.	1.1	80
95	Pneumonia before antibiotics Therapeutic evolution and evaluation in twentieth-century America. Journal of Clinical Investigation, 2006, 116, 2311-2311.	3.9	1
96	Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Molecular Microbiology, 2006, 59, 961-974.	1.2	211
97	The atypical amino-terminal LPNTG-containing domain of the pneumococcal human IgA1-specific protease is required for proper enzyme localization and function. Molecular Microbiology, 2006, 61, 526-543.	1.2	37
98	Epithelial Cells Are Sensitive Detectors of Bacterial Pore-forming Toxins. Journal of Biological Chemistry, 2006, 281, 12994-12998.	1.6	158
99	Bacterial colonization of nasal mucosa induces expression of siderocalin, an iron-sequestering component of innate immunity. Cellular Microbiology, 2005, 7, 1404-1417.	1.1	80
100	The Role of Innate Immune Responses in the Outcome of Interspecies Competition for Colonization of Mucosal Surfaces. PLoS Pathogens, 2005, 1 , e1.	2.1	177
101	Host and Bacterial Factors Contributing to the Clearance of Colonization by Streptococcus pneumoniae in a Murine Model. Infection and Immunity, 2005, 73, 7718-7726.	1.0	176
102	Synergistic proinflammatory responses induced by polymicrobial colonization of epithelial surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3429-3434.	3.3	130
103	Crossâ€Reactivity of Human Immunoglobulin G2 Recognizing Phosphorylcholine and Evidence for Protection against Major Bacterial Pathogens of the Human Respiratory Tract. Journal of Infectious Diseases, 2004, 190, 1254-1263.	1.9	57
104	Limited Role of Antibody in Clearance of Streptococcus pneumoniae in a Murine Model of Colonization. Infection and Immunity, 2004, 72, 5807-5813.	1.0	144
105	Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Molecular Microbiology, 2004, 54, 159-171.	1.2	100
106	Multiple mechanisms for choline transport and utilization in Haemophilus influenzae. Molecular Microbiology, 2003, 50, 537-548.	1.2	43
107	Factors Contributing to Hydrogen Peroxide Resistance in Streptococcus pneumoniae Include Pyruvate Oxidase (SpxB) and Avoidance of the Toxic Effects of the Fenton Reaction. Journal of Bacteriology, 2003, 185, 6815-6825.	1.0	238
108	Transcriptional Profile of the Escherichia coli Response to the Antimicrobial Insect Peptide Cecropin A. Antimicrobial Agents and Chemotherapy, 2003, 47, 1-6.	1.4	78

#	Article	IF	Citations
109	Serum Immunoglobulin G Response to Candidate Vaccine Antigens during Experimental Human Pneumococcal Colonization. Infection and Immunity, 2003, 71, 5724-5732.	1.0	82
110	Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4215-4220.	3.3	167
111	\hat{l}^2 -Defensin 1 Contributes to Pulmonary Innate Immunity in Mice. Infection and Immunity, 2002, 70, 3068-3072.	1.0	220
112	The Inhibitory Effect of Câ€Reactive Protein on Bacterial Phosphorylcholine Plateletâ€Activating Factor Receptor–Mediated Adherence Is Blocked by Surfactant. Journal of Infectious Diseases, 2002, 186, 361-371.	1.9	75
113	Toll-Like Receptor 4 Mediates Innate Immune Responses to <i>Haemophilus influenzae</i> Infection in Mouse Lung. Journal of Immunology, 2002, 168, 810-815.	0.4	182
114	Neuraminidase Expressed by Streptococcus pneumoniae Desialylates the Lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae : a Paradigm for Interbacterial Competition among Pathogens of the Human Respiratory Tract. Infection and Immunity, 2002, 70, 7161-7164.	1.0	106
115	The Immune Response to Pneumococcal Proteins during Experimental Human Carriage. Journal of Experimental Medicine, 2002, 195, 359-365.	4.2	245
116	Short-Sequence Tandem and Nontandem DNA Repeats and Endogenous Hydrogen Peroxide Production Contribute to Genetic Instability of Streptococcus pneumoniae. Journal of Bacteriology, 2002, 184, 4392-4399.	1.0	94
117	Binding of the non-typeable Haemophilus influenzae lipooligosaccharide to the PAF receptor initiates host cell signalling. Cellular Microbiology, 2001, 3, 525-536.	1.1	104
118	Expression of C-Reactive Protein in the Human Respiratory Tract. Infection and Immunity, 2001, 69, 1747-1754.	1.0	160
119	Changes in Availability of Oxygen Accentuate Differences in Capsular Polysaccharide Expression by Phenotypic Variants and Clinical Isolates of Streptococcus pneumoniae. Infection and Immunity, 2001, 69, 5430-5439.	1.0	152
120	The position of phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae affects binding and sensitivity to C-reactive protein-mediated killing. Molecular Microbiology, 2000, 35, 234-245.	1.2	146
121	Non-typeable Haemophilus influenzae adhere to and invade human bronchial epithelial cells via an interaction of lipooligosaccharide with the PAF receptor. Molecular Microbiology, 2000, 37, 13-27.	1.2	292
122	Characterization of the phosphocholine-substituted oligosaccharide in lipopolysaccharides of type b Haemophilus influenzae. FEBS Journal, 2000, 267, 3902-3913.	0.2	54
123	Differential Protein Expression in Phenotypic Variants of Streptococcus pneumoniae. Infection and Immunity, 2000, 68, 4604-4610.	1.0	81
124	Bacterial Phosphorylcholine Decreases Susceptibility to the Antimicrobial Peptide LL-37/hCAP18 Expressed in the Upper Respiratory Tract. Infection and Immunity, 2000, 68, 1664-1671.	1.0	173
125	Antibacterial and Antimembrane Activities of Cecropin A in Escherichia coli. Antimicrobial Agents and Chemotherapy, 2000, 44, 602-607.	1.4	108
126	Role of Lipopolysaccharide Phase Variation in Susceptibility of Haemophilus influenzae to Bactericidal Immunoglobulin M Antibodies in Rabbit Sera. Infection and Immunity, 2000, 68, 2804-2807.	1.0	15

#	Article	IF	CITATIONS
127	The generation of diversity by Haemophilus influenzae. Trends in Microbiology, 2000, 8, 433-435.	3.5	28
128	Inhibitory and Bactericidal Effects of Hydrogen Peroxide Production by Streptococcus pneumoniae on Other Inhabitants of the Upper Respiratory Tract. Infection and Immunity, 2000, 68, 3990-3997.	1.0	313
129	Antigenic Diversity of <i>Haemophilus somnus</i> Lipooligosaccharide: Phase-Variable Accessibility of the Phosphorylcholine Epitope. Journal of Clinical Microbiology, 2000, 38, 4412-4419.	1.8	26
130	Relationship between Cell Surface Carbohydrates and Intrastrain Variation on Opsonophagocytosis of <i>Streptococcus pneumoniae </i> . Infection and Immunity, 1999, 67, 2327-2333.	1.0	186
131	Effect of Intrastrain Variation in the Amount of Capsular Polysaccharide on Genetic Transformation of $\langle i \rangle$ Streptococcus pneumoniae $\langle i \rangle$: Implications for Virulence Studies of Encapsulated Strains. Infection and Immunity, 1999, 67, 3690-3692.	1.0	47
132	Opacity-Associated Protein A Contributes to the Binding of <i>Haemophilus influenzae</i> to Chang Epithelial Cells. Infection and Immunity, 1999, 67, 4153-4160.	1.0	37
133	Adaptation of Haemophilus influenzaeto acquired and innate humoral immunity based on phase variation of lipopolysaccharide. Molecular Microbiology, 1998, 30, 767-775.	1.2	127
134	Phase Variation in Colony Opacity byStreptococcus pneumoniae. Microbial Drug Resistance, 1998, 4, 129-135.	0.9	54
135	Phosphorylcholine on the Lipopolysaccharide of Haemophilus influenzae Contributes to Persistence in the Respiratory Tract and Sensitivity to Serum Killing Mediated by C-reactive Protein. Journal of Experimental Medicine, 1998, 187, 631-640.	4.2	292
136	The Phosphorylcholine Epitope Undergoes Phase Variation on a 43-Kilodalton Protein in Pseudomonas aeruginosa and on Pili of Neisseria meningitidis and Neisseria gonorrhoeae. Infection and Immunity, 1998, 66, 4263-4267.	1.0	4
137	The Phosphorylcholine Epitope Undergoes Phase Variation on a 43-Kilodalton Protein in Pseudomonas aeruginosa and on Pili of Neisseria meningitidis and Neisseria gonorrhoeae. Infection and Immunity, 1998, 66, 4263-4267.	1.0	122
138	The Concentration-Dependent Membrane Activity of Cecropin Aâ€. Biochemistry, 1997, 36, 11452-11460.	1.2	107
139	Contribution of novel cholineâ€binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Molecular Microbiology, 1997, 25, 819-829.	1.2	446
140	Identification and characterization of a cell envelope protein of Haemophilus influenzae contributing to phase variation in colony opacity and nasopharyngeal colonization. Molecular Microbiology, 1995, 17, 555-564.	1.2	60
141	The genetic basis of colony opacity in Streptococcus pneumoniae: evidence for the effect of box elements on the frequency of phenotypic variation. Molecular Microbiology, 1995, 16, 215-227.	1.2	60
142	RECURRENT PNEUMOCOCCAL BACTEREMIA IN NORMAL CHILDREN. Pediatric Infectious Disease Journal, 1994, 13, 231-232.	1.1	14
143	Structural studies of the saccharide part of the cell envelope lipopolysaccharide from Haemophilus influenzae strain AH1-3 (lic3 +). Carbohydrate Research, 1993, 246, 319-330.	1.1	74
144	The oligosaccharide of Haemophilus influenzae. Microbial Pathogenesis, 1992, 13, 335-342.	1.3	20

#	Article	IF	CITATIONS
145	Antigenic similarities in lipopolysaccharides of Haemophilus and Neisseria and expression of a digalactoside structure also present on human cells. Microbial Pathogenesis, 1990, 9, 441-450.	1.3	99
146	The molecular mechanism of phase variation of H. influenzae lipopolysaccharide. Cell, 1989, 59, 657-665.	13.5	327
147	Synthesis and Secretion of Corticosteroid-Binding Globulin by Rat Liver. Journal of Clinical Investigation, 1979, 63, 461-467.	3.9	54
148	Animal Models of Pneumococcal Colonization. , 0, , 59-66.		5
149	Role of Phosphorylcholine in Respiratory Tract Colonization. , 0, , 59-72.		1
150	Competitive and Cooperative Interactions in the Respiratory Microflora., 0,, 87-95.		1
151	Immunoglobulin A1 Proteases of Pathogenic and Commensal Bacteria of the Respiratory Tract. , 0, , $119\text{-}129.$		2
152	Bacterial Adherence and Tropism in the Human Respiratory Tract. , 0, , 97-117.		1