
Jeffrey N Weiser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1037914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nature Reviews Microbiology, 2008, 6, 288-301.	13.6	1,002
2	Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nature Medicine, 2010, 16, 228-231.	15.2	966
3	Streptococcus pneumoniae: transmission, colonization and invasion. Nature Reviews Microbiology, 2018, 16, 355-367.	13.6	636
4	Contribution of novel cholineâ€binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Molecular Microbiology, 1997, 25, 819-829.	1.2	446
5	The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nature Medicine, 2014, 20, 524-530.	15.2	438
6	Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. Journal of Clinical Investigation, 2009, 119, 1899-909.	3.9	381
7	The molecular mechanism of phase variation of H. influenzae lipopolysaccharide. Cell, 1989, 59, 657-665.	13.5	327
8	Inhibitory and Bactericidal Effects of Hydrogen Peroxide Production by Streptococcus pneumoniae on Other Inhabitants of the Upper Respiratory Tract. Infection and Immunity, 2000, 68, 3990-3997.	1.0	313
9	Phosphorylcholine on the Lipopolysaccharide of Haemophilus influenzae Contributes to Persistence in the Respiratory Tract and Sensitivity to Serum Killing Mediated by C-reactive Protein. Journal of Experimental Medicine, 1998, 187, 631-640.	4.2	292
10	Non-typeable Haemophilus influenzae adhere to and invade human bronchial epithelial cells via an interaction of lipooligosaccharide with the PAF receptor. Molecular Microbiology, 2000, 37, 13-27.	1.2	292
11	Capsule Enhances Pneumococcal Colonization by Limiting Mucus-Mediated Clearance. Infection and Immunity, 2007, 75, 83-90.	1.0	264
12	Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Research, 2019, 29, 304-316.	2.4	258
13	Synergistic stimulation of type I interferons during influenza virus coinfection promotes Streptococcus pneumoniae colonization in mice. Journal of Clinical Investigation, 2011, 121, 3657-3665.	3.9	246
14	The Immune Response to Pneumococcal Proteins during Experimental Human Carriage. Journal of Experimental Medicine, 2002, 195, 359-365.	4.2	245
15	Factors Contributing to Hydrogen Peroxide Resistance in Streptococcus pneumoniae Include Pyruvate Oxidase (SpxB) and Avoidance of the Toxic Effects of the Fenton Reaction. Journal of Bacteriology, 2003, 185, 6815-6825.	1.0	238
16	Klebsiella pneumoniae Yersiniabactin Promotes Respiratory Tract Infection through Evasion of Lipocalin 2. Infection and Immunity, 2011, 79, 3309-3316.	1.0	227
17	β-Defensin 1 Contributes to Pulmonary Innate Immunity in Mice. Infection and Immunity, 2002, 70, 3068-3072.	1.0	220
18	Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Molecular Microbiology, 2006, 59, 961-974.	1.2	211

#	Article	IF	CITATIONS
19	Influenza Promotes Pneumococcal Growth during Coinfection by Providing Host Sialylated Substrates as a Nutrient Source. Cell Host and Microbe, 2014, 16, 55-67.	5.1	209
20	pyseer: a comprehensive tool for microbial pangenome-wide association studies. Bioinformatics, 2018, 34, 4310-4312.	1.8	208
21	The blp Bacteriocins of Streptococcus pneumoniae Mediate Intraspecies Competition both In Vitro and In Vivo. Infection and Immunity, 2007, 75, 443-451.	1.0	190
22	Relationship between Cell Surface Carbohydrates and Intrastrain Variation on Opsonophagocytosis of <i>Streptococcus pneumoniae</i> . Infection and Immunity, 1999, 67, 2327-2333.	1.0	186
23	Toll-Like Receptor 4 Mediates Innate Immune Responses to <i>Haemophilus influenzae</i> Infection in Mouse Lung. Journal of Immunology, 2002, 168, 810-815.	0.4	182
24	Human Neutrophils Kill <i>Streptococcus pneumoniae</i> via Serine Proteases. Journal of Immunology, 2009, 183, 2602-2609.	0.4	179
25	The Role of Innate Immune Responses in the Outcome of Interspecies Competition for Colonization of Mucosal Surfaces. PLoS Pathogens, 2005, 1, e1.	2.1	177
26	Host and Bacterial Factors Contributing to the Clearance of Colonization by Streptococcus pneumoniae in a Murine Model. Infection and Immunity, 2005, 73, 7718-7726.	1.0	176
27	Bacterial Phosphorylcholine Decreases Susceptibility to the Antimicrobial Peptide LL-37/hCAP18 Expressed in the Upper Respiratory Tract. Infection and Immunity, 2000, 68, 1664-1671.	1.0	173
28	Modifications to the Peptidoglycan Backbone Help Bacteria To Establish Infection. Infection and Immunity, 2011, 79, 562-570.	1.0	169
29	Nod2 sensing of lysozyme-digested peptidoglycan promotes macrophage recruitment and clearance of S. pneumoniae colonization in mice. Journal of Clinical Investigation, 2011, 121, 3666-3676.	3.9	169
30	Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4215-4220.	3.3	167
31	Expression of C-Reactive Protein in the Human Respiratory Tract. Infection and Immunity, 2001, 69, 1747-1754.	1.0	160
32	Epithelial Cells Are Sensitive Detectors of Bacterial Pore-forming Toxins. Journal of Biological Chemistry, 2006, 281, 12994-12998.	1.6	158
33	Mechanisms of Bacterial Colonization of the Respiratory Tract. Annual Review of Microbiology, 2015, 69, 425-444.	2.9	154
34	Changes in Availability of Oxygen Accentuate Differences in Capsular Polysaccharide Expression by Phenotypic Variants and Clinical Isolates of Streptococcus pneumoniae. Infection and Immunity, 2001, 69, 5430-5439.	1.0	152
35	Mucosal Lipocalin 2 Has Pro-Inflammatory and Iron-Sequestering Effects in Response to Bacterial Enterobactin. PLoS Pathogens, 2009, 5, e1000622.	2.1	148
36	The pneumococcus: why a commensal misbehaves. Journal of Molecular Medicine, 2010, 88, 97-102.	1.7	147

#	Article	IF	CITATIONS
37	The position of phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae affects binding and sensitivity to C-reactive protein-mediated killing. Molecular Microbiology, 2000, 35, 234-245.	1.2	146
38	Limited Role of Antibody in Clearance of Streptococcus pneumoniae in a Murine Model of Colonization. Infection and Immunity, 2004, 72, 5807-5813.	1.0	144
39	Synergistic proinflammatory responses induced by polymicrobial colonization of epithelial surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3429-3434.	3.3	130
40	Adaptation ofHaemophilus influenzaeto acquired and innate humoral immunity based on phase variation of lipopolysaccharide. Molecular Microbiology, 1998, 30, 767-775.	1.2	127
41	The Phosphorylcholine Epitope Undergoes Phase Variation on a 43-Kilodalton Protein in Pseudomonas aeruginosa and on Pili of Neisseria meningitidis and Neisseria gonorrhoeae. Infection and Immunity, 1998, 66, 4263-4267.	1.0	122
42	Interaction of Lipocalin 2, Transferrin, and Siderophores Determines the Replicative Niche of Klebsiella pneumoniae during Pneumonia. MBio, 2012, 3, .	1.8	116
43	Minimization of Bacterial Size Allows for Complement Evasion and Is Overcome by the Agglutinating Effect of Antibody. Cell Host and Microbe, 2011, 10, 486-496.	5.1	112
44	Three Surface Exoglycosidases from Streptococcus pneumoniae, NanA, BgaA, and StrH, Promote Resistance to Opsonophagocytic Killing by Human Neutrophils. Infection and Immunity, 2010, 78, 2108-2116.	1.0	111
45	Antibacterial and Antimembrane Activities of Cecropin A in Escherichia coli. Antimicrobial Agents and Chemotherapy, 2000, 44, 602-607.	1.4	108
46	Host-to-Host Transmission of Streptococcus pneumoniae Is Driven by Its Inflammatory Toxin, Pneumolysin. Cell Host and Microbe, 2017, 21, 73-83.	5.1	108
47	The Concentration-Dependent Membrane Activity of Cecropin Aâ€. Biochemistry, 1997, 36, 11452-11460.	1.2	107
48	Neuraminidase Expressed by Streptococcus pneumoniae Desialylates the Lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae : a Paradigm for Interbacterial Competition among Pathogens of the Human Respiratory Tract. Infection and Immunity, 2002, 70, 7161-7164.	1.0	106
49	Binding of the non-typeable Haemophilus influenzae lipooligosaccharide to the PAF receptor initiates host cell signalling. Cellular Microbiology, 2001, 3, 525-536.	1.1	104
50	<i>Streptococcus pneumoniae</i> Resistance to Complement-Mediated Immunity Is Dependent on the Capsular Serotype. Infection and Immunity, 2010, 78, 716-725.	1.0	103
51	MARCO Is Required for TLR2- and Nod2-Mediated Responses to <i>Streptococcus pneumoniae</i> and Clearance of Pneumococcal Colonization in the Murine Nasopharynx. Journal of Immunology, 2013, 190, 250-258.	0.4	103
52	Invasive Bacterial Pathogens Exploit TLR-Mediated Downregulation of Tight Junction Components to Facilitate Translocation across the Epithelium. Cell Host and Microbe, 2011, 9, 404-414.	5.1	102
53	Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Molecular Microbiology, 2004, 54, 159-171.	1.2	100
54	Antigenic similarities in lipopolysaccharides of Haemophilus and Neisseria and expression of a digalactoside structure also present on human cells. Microbial Pathogenesis, 1990, 9, 441-450.	1.3	99

#	Article	IF	CITATIONS
55	Live Attenuated Streptococcus pneumoniae Strains Induce Serotype-Independent Mucosal and Systemic Protection in Mice. Infection and Immunity, 2007, 75, 2469-2475.	1.0	95
56	Short-Sequence Tandem and Nontandem DNA Repeats and Endogenous Hydrogen Peroxide Production Contribute to Genetic Instability of Streptococcus pneumoniae. Journal of Bacteriology, 2002, 184, 4392-4399.	1.0	94
57	Within-Host Competition Drives Selection for the Capsule Virulence Determinant of Streptococcus pneumoniae. Current Biology, 2010, 20, 1222-1226.	1.8	89
58	Peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at homeostasis. Blood, 2016, 127, 2460-2471.	0.6	88
59	The neonatal window of opportunity—early priming for life. Journal of Allergy and Clinical Immunology, 2018, 141, 1212-1214.	1.5	87
60	Resistance to Mucosal Lysozyme Compensates for the Fitness Deficit of Peptidoglycan Modifications by Streptococcus pneumoniae. PLoS Pathogens, 2008, 4, e1000241.	2.1	86
61	Pneumococcal Surface Protein A Inhibits Complement Deposition on the Pneumococcal Surface by Competing with the Binding of C-Reactive Protein to Cell-Surface Phosphocholine. Journal of Immunology, 2012, 189, 5327-5335.	0.4	86
62	Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis. Nature Communications, 2019, 10, 2176.	5.8	83
63	Serum Immunoglobulin G Response to Candidate Vaccine Antigens during Experimental Human Pneumococcal Colonization. Infection and Immunity, 2003, 71, 5724-5732.	1.0	82
64	Differential Protein Expression in Phenotypic Variants of Streptococcus pneumoniae. Infection and Immunity, 2000, 68, 4604-4610.	1.0	81
65	Bacterial colonization of nasal mucosa induces expression of siderocalin, an iron-sequestering component of innate immunity. Cellular Microbiology, 2005, 7, 1404-1417.	1.1	80
66	Nod1 mediates cytoplasmic sensing of combinations of extracellular bacteria. Cellular Microbiology, 2007, 9, 1343-1351.	1.1	80
67	Transcriptional Profile of the Escherichia coli Response to the Antimicrobial Insect Peptide Cecropin A. Antimicrobial Agents and Chemotherapy, 2003, 47, 1-6.	1.4	78
68	The Inhibitory Effect of Câ€Reactive Protein on Bacterial Phosphorylcholine Plateletâ€Activating Factor Receptor–Mediated Adherence Is Blocked by Surfactant. Journal of Infectious Diseases, 2002, 186, 361-371.	1.9	75
69	Structural studies of the saccharide part of the cell envelope lipopolysaccharide from Haemophilus influenzae strain AH1-3 (lic3 +). Carbohydrate Research, 1993, 246, 319-330.	1.1	74
70	Microbial Modulation of Host Immunity with the Small Molecule Phosphorylcholine. Infection and Immunity, 2013, 81, 392-401.	1.0	74
71	Nod1 Signaling Overcomes Resistance of S. pneumoniae to Opsonophagocytic Killing. PLoS Pathogens, 2007, 3, e118.	2.1	72
72	Conserved Mutations in the Pneumococcal Bacteriocin Transporter Gene, <i>blpA</i> , Result in a Complex Population Consisting of Producers and Cheaters. MBio, 2011, 2, .	1.8	70

#	Article	IF	CITATIONS
73	The immunological mechanisms that control pneumococcal carriage. PLoS Pathogens, 2017, 13, e1006665.	2.1	69
74	Neutrophil-Toxin Interactions Promote Antigen Delivery and Mucosal Clearance of <i>Streptococcus pneumoniae</i> . Journal of Immunology, 2008, 180, 6246-6254.	0.4	66
75	Increased Chain Length Promotes Pneumococcal Adherence and Colonization. Infection and Immunity, 2012, 80, 3454-3459.	1.0	65
76	Phosphorylcholine Allows for Evasion of Bactericidal Antibody by Haemophilus influenzae. PLoS Pathogens, 2012, 8, e1002521.	2.1	64
77	Single Cell Bottlenecks in the Pathogenesis of Streptococcus pneumoniae. PLoS Pathogens, 2016, 12, e1005887.	2.1	64
78	TLR2 Signaling Decreases Transmission of Streptococcus pneumoniae by Limiting Bacterial Shedding in an Infant Mouse Influenza A Co-infection Model. PLoS Pathogens, 2014, 10, e1004339.	2.1	63
79	The transfer of choline from the host to the bacterial cell surface requires glpQ in Haemophilus influenzae. Molecular Microbiology, 2008, 41, 1029-1036.	1.2	62
80	Identification and characterization of a cell envelope protein of Haemophilus influenzae contributing to phase variation in colony opacity and nasopharyngeal colonization. Molecular Microbiology, 1995, 17, 555-564.	1.2	60
81	The genetic basis of colony opacity in Streptococcus pneumoniae: evidence for the effect of box elements on the frequency of phenotypic variation. Molecular Microbiology, 1995, 16, 215-227.	1.2	60
82	Infant Mouse Model for the Study of Shedding and Transmission during Streptococcus pneumoniae Monoinfection. Infection and Immunity, 2016, 84, 2714-2722.	1.0	59
83	Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1745-1754.	3.3	59
84	Capsule Type and Amount Affect Shedding and Transmission of <i>Streptococcus pneumoniae</i> . MBio, 2017, 8, .	1.8	58
85	Crossâ€Reactivity of Human Immunoglobulin G2 Recognizing Phosphorylcholine and Evidence for Protection against Major Bacterial Pathogens of the Human Respiratory Tract. Journal of Infectious Diseases, 2004, 190, 1254-1263.	1.9	57
86	Co-infection subverts mucosal immunity in the upper respiratory tract. Current Opinion in Immunology, 2012, 24, 417-423.	2.4	55
87	Episodic Aspiration with Oral Commensals Induces a MyD88-dependent, Pulmonary T-Helper Cell Type 17 Response that Mitigates Susceptibility to <i>Streptococcus pneumoniae</i> . American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1099-1111.	2.5	55
88	Phase Variation in Colony Opacity byStreptococcus pneumoniae. Microbial Drug Resistance, 1998, 4, 129-135.	0.9	54
89	Characterization of the phosphocholine-substituted oligosaccharide in lipopolysaccharides of type b Haemophilus influenzae. FEBS Journal, 2000, 267, 3902-3913.	0.2	54
90	Synthesis and Secretion of Corticosteroid-Binding Globulin by Rat Liver. Journal of Clinical Investigation, 1979, 63, 461-467.	3.9	54

#	Article	IF	CITATIONS
91	Role of p38 MAP Kinase and Transforming Growth Factor-Î ² Signaling in Transepithelial Migration of Invasive Bacterial Pathogens. Journal of Biological Chemistry, 2007, 282, 28700-28708.	1.6	51
92	Intracellular sensors of extracellular bacteria. Immunological Reviews, 2011, 243, 9-25.	2.8	50
93	Unravelling the Multiple Functions of the Architecturally Intricate Streptococcus pneumoniae β-galactosidase, BgaA. PLoS Pathogens, 2014, 10, e1004364.	2.1	49
94	Effect of Intrastrain Variation in the Amount of Capsular Polysaccharide on Genetic Transformation of <i>Streptococcus pneumoniae</i> : Implications for Virulence Studies of Encapsulated Strains. Infection and Immunity, 1999, 67, 3690-3692.	1.0	47
95	Sensing of Interleukin-1 Cytokines during Streptococcus pneumoniae Colonization Contributes to Macrophage Recruitment and Bacterial Clearance. Infection and Immunity, 2015, 83, 3204-3212.	1.0	44
96	Multiple mechanisms for choline transport and utilization in Haemophilus influenzae. Molecular Microbiology, 2003, 50, 537-548.	1.2	43
97	Pneumococcal quorum sensing drives an asymmetric owner–intruder competitive strategy during carriage via the competence regulon. Nature Microbiology, 2019, 4, 198-208.	5.9	43
98	Bacteriocin Activity of Streptococcus pneumoniae Is Controlled by the Serine Protease HtrA via Posttranscriptional Regulation. Journal of Bacteriology, 2009, 191, 1509-1518.	1.0	41
99	Early Bacterial Colonization Induces Toll-Like Receptor-Dependent Transforming Growth Factor \hat{I}^2 Signaling in the Epithelium. Infection and Immunity, 2009, 77, 2212-2220.	1.0	41
100	The Effects of PspC on Complement-Mediated Immunity to <i>Streptococcus pneumoniae</i> Vary with Strain Background and Capsular Serotype. Infection and Immunity, 2010, 78, 283-292.	1.0	41
101	Degradation Products of the Extracellular Pathogen Streptococcus pneumoniae Access the Cytosol via Its Pore-Forming Toxin. MBio, 2015, 6, .	1.8	41
102	Impact of the Molecular Form of Immunoglobulin A on Functional Activity in Defense against Streptococcus pneumoniae. Infection and Immunity, 2007, 75, 1801-1810.	1.0	40
103	Protection from the acquisition of <i>Staphylococcus aureus</i> nasal carriage by cross-reactive antibody to a pneumococcal dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13823-13828.	3.3	39
104	Evasion of killing by human antibody and complement through multiple variations in the surface oligosaccharide of <i><scp>H</scp>aemophilus influenzae</i> . Molecular Microbiology, 2013, 88, 603-618.	1.2	39
105	Inhibition of the Pneumococcal Virulence Factor StrH and Molecular Insights into N-Glycan Recognition and Hydrolysis. Structure, 2011, 19, 1603-1614.	1.6	38
106	Binding of human factor <scp>H</scp> to outer membrane protein <scp>P</scp> 5 of nonâ€ŧypeable <scp><i>H</i></scp> <i>aemophilus influenzae</i> contributes to complement resistance. Molecular Microbiology, 2014, 94, 89-106.	1.2	38
107	The atypical amino-terminal LPNTG-containing domain of the pneumococcal human IgA1-specific protease is required for proper enzyme localization and function. Molecular Microbiology, 2006, 61, 526-543.	1.2	37
108	Antibody isotype diversity against SARS-CoV-2 is associated with differential serum neutralization capacities. Scientific Reports, 2021, 11, 5538.	1.6	37

#	Article	IF	CITATIONS
109	Opacity-Associated Protein A Contributes to the Binding of <i>Haemophilus influenzae</i> to Chang Epithelial Cells. Infection and Immunity, 1999, 67, 4153-4160.	1.0	37
110	Shielding of a Lipooligosaccharide IgM Epitope Allows Evasion of Neutrophil-Mediated Killing of an Invasive Strain of Nontypeable Haemophilus influenzae. MBio, 2014, 5, e01478-14.	1.8	35
111	Macrophage Migration Inhibitory Factor Promotes Clearance of Pneumococcal Colonization. Journal of Immunology, 2014, 193, 764-772.	0.4	33
112	Immune exclusion by naturally acquired secretory IgA against pneumococcal pilus-1. Journal of Clinical Investigation, 2020, 130, 927-941.	3.9	31
113	Clearance of Pneumococcal Colonization in Infants Is Delayed through Altered Macrophage Trafficking. PLoS Pathogens, 2015, 11, e1005004.	2.1	31
114	Interleukin-8 Secretion in Response to Aferric Enterobactin Is Potentiated by Siderocalin. Infection and Immunity, 2007, 75, 3160-3168.	1.0	30
115	Macrophage Migration Inhibitory Factor Is Detrimental in Pneumococcal Pneumonia and a Target for Therapeutic Immunomodulation. Journal of Infectious Diseases, 2015, 212, 1677-1682.	1.9	30
116	Identifying Mutator Phenotypes among Fluoroquinolone-Resistant Strains of Streptococcus pneumoniae Using Fluctuation Analysis. Antimicrobial Agents and Chemotherapy, 2007, 51, 3225-3229.	1.4	29
117	Mucosal Clearance of Capsule-Expressing Bacteria Requires Both TLR and Nucleotide-Binding Oligomerization Domain 1 Signaling. Journal of Immunology, 2008, 181, 7909-7916.	0.4	29
118	The generation of diversity by Haemophilus influenzae. Trends in Microbiology, 2000, 8, 433-435.	3.5	28
119	Coinfection with Streptococcus pneumoniae Modulates the B Cell Response to Influenza Virus. Journal of Virology, 2014, 88, 11995-12005.	1.5	27
120	Antigenic Diversity of <i>Haemophilus somnus</i> Lipooligosaccharide: Phase-Variable Accessibility of the Phosphorylcholine Epitope. Journal of Clinical Microbiology, 2000, 38, 4412-4419.	1.8	26
121	Bacterial exploitation of phosphorylcholine mimicry suppresses inflammation to promote airway infection. Journal of Clinical Investigation, 2015, 125, 3878-3890.	3.9	26
122	The battle with the host over microbial size. Current Opinion in Microbiology, 2013, 16, 59-62.	2.3	25
123	Capsule Prolongs Survival of Streptococcus pneumoniae during Starvation. Infection and Immunity, 2018, 86, .	1.0	25
124	An Infant Mouse Model of Influenza Virus Transmission Demonstrates the Role of Virus-Specific Shedding, Humoral Immunity, and Sialidase Expression by Colonizing Streptococcus pneumoniae. MBio, 2018, 9, .	1.8	25
125	Identification of Pneumococcal Factors Affecting Pneumococcal Shedding Shows that the <i>dlt</i> Locus Promotes Inflammation and Transmission. MBio, 2019, 10, .	1.8	25
126	Tolerance of a Phage Element by Streptococcus pneumoniae Leads to a Fitness Defect during Colonization. Journal of Bacteriology, 2014, 196, 2670-2680.	1.0	24

#	Article	IF	CITATIONS
127	Type I Interferon Signaling Is a Common Factor Driving Streptococcus pneumoniae and Influenza A Virus Shedding and Transmission. MBio, 2021, 12, .	1.8	23
128	Identification of the Targets of Cross-Reactive Antibodies Induced by <i>Streptococcus pneumoniae</i> Colonization. Infection and Immunity, 2010, 78, 2231-2239.	1.0	21
129	Pneumolysin expression by streptococcus pneumoniae protects colonized mice from influenza virus-induced disease. Virology, 2014, 462-463, 254-265.	1.1	21
130	Age-related differences in IL-1 signaling and capsule serotype affect persistence of Streptococcus pneumoniae colonization. PLoS Pathogens, 2018, 14, e1007396.	2.1	21
131	Regenerative therapy based on miRNA-302 mimics for enhancing host recovery from pneumonia caused by <i>Streptococcus pneumoniae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8493-8498.	3.3	21
132	The oligosaccharide of Haemophilus influenzae. Microbial Pathogenesis, 1992, 13, 335-342.	1.3	20
133	Natural Antibody to Conserved Targets of <i>Haemophilus influenzae</i> Limits Colonization of the Murine Nasopharynx. Infection and Immunity, 2009, 77, 3458-3465.	1.0	19
134	Streptococcus pneumoniae Transmission Is Blocked by Type-Specific Immunity in an Infant Mouse Model. MBio, 2017, 8, .	1.8	17
135	Pneumolysin Induces 12-Lipoxygenase–Dependent Neutrophil Migration duringStreptococcus pneumoniaeInfection. Journal of Immunology, 2020, 204, 101-111.	0.4	16
136	Role of Lipopolysaccharide Phase Variation in Susceptibility of Haemophilus influenzae to Bactericidal Immunoglobulin M Antibodies in Rabbit Sera. Infection and Immunity, 2000, 68, 2804-2807.	1.0	15
137	Neuraminidase B controls neuraminidase A-dependent mucus production and evasion. PLoS Pathogens, 2021, 17, e1009158.	2.1	15
138	RECURRENT PNEUMOCOCCAL BACTEREMIA IN NORMAL CHILDREN. Pediatric Infectious Disease Journal, 1994, 13, 231-232.	1.1	14
139	Pneumococcal capsule blocks protection by immunization with conserved surface proteins. Npj Vaccines, 2021, 6, 155.	2.9	14
140	Serotype-Dependent Effects on the Dynamics of Pneumococcal Colonization and Implications for Transmission. MBio, 2022, 13, e0015822.	1.8	11
141	Decreased production of epithelial-derived antimicrobial molecules at mucosal barriers during early life. Mucosal Immunology, 2021, 14, 1358-1368.	2.7	9
142	Exposure to Cigarette Smoke Enhances Pneumococcal Transmission Among Littermates in an Infant Mouse Model. Frontiers in Cellular and Infection Microbiology, 2021, 11, 651495.	1.8	8
143	Animal Models of Pneumococcal Colonization. , 0, , 59-66.		5
144	The Phosphorylcholine Epitope Undergoes Phase Variation on a 43-Kilodalton Protein in Pseudomonas aeruginosa and on Pili of Neisseria meningitidis and Neisseria gonorrhoeae. Infection and Immunity, 1998, 66, 4263-4267.	1.0	4

#	Article	IF	CITATIONS
145	Phase Variation of Streptococcus pneumoniae. , 2014, , 268-274.		3
146	Mechanisms of Carriage. , 2014, , 169-182.		2
147	Immunoglobulin A1 Proteases of Pathogenic and Commensal Bacteria of the Respiratory Tract. , 0, , 119-129.		2
148	Pneumonia before antibiotics Therapeutic evolution and evaluation in twentieth-century America. Journal of Clinical Investigation, 2006, 116, 2311-2311.	3.9	1
149	Role of Phosphorylcholine in Respiratory Tract Colonization. , 0, , 59-72.		1
150	Competitive and Cooperative Interactions in the Respiratory Microflora. , 0, , 87-95.		1
151	Bacterial Adherence and Tropism in the Human Respiratory Tract. , 0, , 97-117.		1
152	Effect of Pneumococcal Polysaccharide Vaccine on Nonbacteremic Pneumococcal Pneumonia. Clinical Infectious Diseases, 2007, 44, 1139-1140.	2.9	0