Germano Heinzelmann

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/1037847/publications.pdf
Version: 2024-02-01

Mechanism and Kinetics of Lipase-Catalyzed Polycondensation of Clycerol and Sebacic Acid: Influence
of Solvent and Temperature. Biomacromolecules, 2022, 23, 2968-2975.

Plasticization of poly(3â€hydroxybutyrate) with triethyl citrate: Thermal and mechanical properties, morphology, and kinetics of crystallization. Journal of Applied Polymer Science, 2021, 138, 49990.
1.3

Automation of absolute protein-ligand binding free energy calculations for docking refinement and compound evaluation. Scientific Reports, 2021, 11, 1116.

Plasticization of Poly(3-hydroxybutyrate-<i>co</i>-3-hydroxyvalerate) with an Oligomeric Polyester:
4 Miscibility and Effect of the Microstructure and Plasticizer Distribution on Thermal and Mechanical
1.6

Properties. ACS Omega, 2021, 6, 3278-3290.
Self-assembly of dual-responsive amphiphilic POEGMA-<i>b-P4VP-<i>b-POEGMA triblock
5 copolymers: effect of temperature, pH , and complexation with Cu <sup $>2+</$ sup $>$. Polymer Chemistry,
1.9

2021, 12, 4668-4679.

6 Combining CROP and ATRP to synthesize pH-responsive poly(2-ethyl-2-oxazoline-<i>b</i>-4-vinylpyridine)
block copolymers. Polymer Chemistry, 2021, 12, 4680-4695.

Twoâ€step route polycondensation for polynaphthalimides synthesis through high molar mass soluble
precursors: A kinetic study. Journal of Applied Polymer Science, 2020, 137, 49262.
1.3

1
pH and thermo-responsive hybrid hydrogels based on PNIPAAM and keratin. European Polymer Journal, 2020, 125, 109538.

Triblock Copolymers Based on Sucrose Methacrylate and Methyl Methacrylate: RAFT Polymerization and Selfâ€Assembly. Macromolecular Chemistry and Physics, 2020, 221, 1900561.

A one-pot, solvent-free, and controlled synthetic route for thermoresponsive hyperbranched polyurethanes. Polymer Chemistry, 2020, 11, 6295-6307.

Colloidal Behavior of Cellulose Nanocrystals Grafted with Poly(2-alkyl-2-oxazoline)s. ACS Omega,
2019, 4, 11893-11905.
Macroporous hydrogels based on carbohydrates monomethacrylates and dimethacrylates: singular
12 properties from carbohydrateâ€based crosslinkers. Journal of Chemical Technology and Biotechnology,
2019, 94, 1913-1924.
Shedding Light on the Hydrolysis Mechanism of cis, trans-[Ru(dmso) ₄Cl₂]
13 Complexes and Their Interactions with DNAâ€"A Computational Perspective. Journal of Physical
1.23

Chemistry B, 2019, 123, 457-467.
A theoretical investigation on the aminolysis of pyromellitic and 1,4,5,8-naphthalenetetracarboxylic dianhydrides. Computational and Theoretical Chemistry, 2019, 1147, 13-19.
1.1

1

Enzymatic synthesis and structural characterization of methacryloylấ Dâ€fructoseâ€ and
Enzymatic synthesis and structural characterization of methacryloylâ€Dâ€fructoseâ€•and
methacryloylâ€Dâ€glucoseâ€oased monomers and poly(methacryloylâ€Dâ€fructose)â€based hydrogels. Journal ofi.6
Chemical Technology and Biotechnology, 2018, 93, 1694-1704.
Amphiphilic polyurethane hydrogels as smart carriers for acidic hydrophobic drugs. International Journal of Pharmaceutics, 2018, 546, 106-114.

Sucrose Methacrylate-Based Amphiphilic Block Copolymers. Macromolecular Chemistry and Physics,
2017, 218, 1600452.
1.1

9
19
20

19 | <i> N </i> â€isopropylacrylamide: Synthesis, properties, and applications. Journal of Applied Polymer |
| :--- |
| Science, 2017, 134, 45495. |

20 Attach-Pull-Release Calculations of Ligand Binding and Conformational Changes on the First BRD4 Bromodomain. Journal of Chemical Theory and Computation, 2017, 13, 3260-3275.
2.3

49

21 Thermoâ€responsive polyurethane hydrogels based on poly(ethylene glycol) and poly(caprolactone):
Physicoâ€chemical and mechanical properties. Journal of Applied Polymer Science, 2016, 133, .
1.3

26

22 Confined PEO crystallisation in immiscible PEO/PLLA blends. RSC Advances, 2016, 6, 30937-30950.
1.7

22
Dynamics of micelle formation from temperature-jump Monte Carlo simulations. Physical Review E,
$2015,92,052305$.
$0.8 \quad 3$

Effect of diisocyanates and chain extenders on the physicochemical properties and morphology of
24 multicomponent segmented polyurethanes based on poly(l -lactide), poly(ethylene glycol) and
$1.6 \quad 13$ poly(trimethylene carbonate). Polymer International, 2015, 64, 1326-1335.

25 Computational Studies of Clutamate Transporters. Biomolecules, 2015, 5, 3067-3086.
1.8

6

26 Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks:
Physico-chemical properties and morphology. Materials Science and Engineering C, 2015, 56, 511-517.

27	Calculation of free energy changes due to mutations from alchemical free energy simulations. Journal of Theoretical and Computational Chemistry, 2015, 14, 1550023.	1.8	6
28	Molecular Dynamics Simulations of the Mammalian Clutamate Transporter EAAT3. PLoS ONE, 2014, 9, e92089.	1.1	18
29	The influence of rigid and flexible monomers on the physicalâ€chemical properties of polyimides. Journal of Applied Polymer Science, 2014, 131, .	1.3	5
30	Computation of Standard Binding Free Energies of Polar and Charged Ligands to the Clutamate Receptor GluA2. Journal of Physical Chemistry B, 2014, 118, 1813-1824.	1.2	27
31	Molecular Dynamics Simulations Elucidate the Mechanism of Proton Transport in the Glutamate Transporter EAAT3. Biophysical Journal, 2014, 106, 2675-2683.	0.2	13

10

33 Na+ Interactions with the Neutral Amino Acid Transporter ASCT1. Journal of Biological Chemistry,
1.6

2014, 289, 17468-17479.

Structures and morphologies of $\langle\mathrm{i}\rangle$ in situ polymerized blends of PMMA and ASA. Journal of
Applied Polymer Science, 2013, 130, 654-664.
1.3

7

```
Insights into the Human Clutamate Transporters from the Bacterial Homolog \(\mathrm{Clt}(\mathrm{Ph})\). Biophysical
Journal, 2013, 104, 109a.
```

Preparation and characterization of cellulose acetate/polysiloxane composites. Cellulose, 2013, 20,
2791-2802.
37

Mechanism and Energetics of Ligand Release in the Aspartate Transporter Clt_{Ph}. Journal
1.2

26 of Physical Chemistry B, 2013, 117, 5486-5496.

A Potent and Selective Peptide Blocker of the Kv1.3 Channel: Prediction from Free-Energy Simulations

39	Morphology and mechanical properties of nanocomposites of cellulose acetate and organic montmorillonite prepared with different plasticizers. Journal of Applied Polymer Science, 2012, 124, 4628-4635.	1.3	5
40	Micellar dynamics and waterâ€"water hydrogen-bonding from temperature-jump Monte Carlo simulations. Chemical Physics Letters, 2012, 550, 83-87.	1.2	6
41	mechanical, thermal, and morphological properties. Journal of Applied Polymer Science, 2012, 123, 3337-3344.	1.3	19

Effect of <i>in situ</i> polymerization conditions of methyl methacrylate on the structural and
morphological properties of poly(methyl) Tj ETQq0 00 rgBT /Overlock 10 Tf 50542 Td (methacrylate)/poly(acrylonitrileâ€ 1.3 i>g</i>â€
PMMA/AES Blends. Journal of Applied Polymer Science, 2012, 124, 2846-2856.
43 Position of the Third Na+ Site in the Aspartate Transporter CItPh and the Human Glutamate
Transporter, EAAT1. PLoS ONE, 2012, 7, e33058.
1.1

65

Free Energy Simulations of Ligand Binding to the Aspartate Transporter GltPh. Biophysical Journal, 2011, 101, 2380-2388.
0.2

32
44

Orientational dynamics for an amphiphilic-solvent solution. Journal of Chemical Physics, 2011, 134, 064901.
1.2

5

Interplay between micelle formation and waterlike phase transitions. Journal of Chemical Physics, 2010, 132, 064905.
1.2

5

Monte Carlo simulations for amphiphilic aggregation near a water phase transition. Journal of Chemical Physics, 2009, 131, 144901.
1.2

8

