

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/103719/publications.pdf Version: 2024-02-01

Υπ Οπτ

#	Article	IF	CITATIONS
1	Piezoelectric property comparison of two-dimensional ZnO nanostructures for energy harvesting devices. RSC Advances, 2021, 11, 3363-3370.	3.6	14
2	Improved piezoelectric performance of two-dimensional ZnO nanodisks-based flexible nanogengerators via ZnO/Spiro-MeOTAD PN junction. Journal of Materials Science: Materials in Electronics, 2020, 31, 5584-5590.	2.2	7
3	Simulation study on piezoelectric characteristics of twoâ€dimensional ZnO nanodiscs. Micro and Nano Letters, 2019, 14, 1029-1032.	1.3	2
4	Improvement in the Piezoelectric Performance of a ZnO Nanogenerator by a ZnO/Spiroâ€MeOTAD psâ€n Heterojunction. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800717.	1.8	8
5	Electrochemical synthesis of p-Cu2O/n-ZnO heterojuncion for enhanced piezoelectric nanogenerators. Journal of Materials Science: Materials in Electronics, 2019, 30, 9466-9470.	2.2	4
6	ZnO ultraviolet photodetector based on flexible polyester fibre substrates by lowâ€ŧemperature hydrothermal approach. Micro and Nano Letters, 2019, 14, 215-218.	1.3	7
7	Two-dimensional ZnO nanosheets grown on flexible ITO-PET substrate for self-powered energy-harvesting nanodevices. Applied Physics Letters, 2018, 112, .	3.3	39
8	Enhancing performance of Ag–ZnO–Ag UV photodetector by piezo-phototronic effect. RSC Advances, 2018, 8, 15290-15296.	3.6	17
9	Improvement in piezoelectric performance of a ZnO nanogenerator by modulating interface engineering of CuO-ZnO heterojunction. Applied Physics Letters, 2018, 113, .	3.3	14
10	Wearable triboelectric nanogenerators based on hybridized triboelectric modes for harvesting mechanical energy. RSC Advances, 2018, 8, 26243-26250.	3.6	12
11	Patterned growth of ZnO nanowires on flexible substrates for enhanced performance of flexible piezoelectric nanogenerators. Applied Physics Letters, 2017, 110, .	3.3	56
12	Fabrication of flexible nanogenerator with enhanced performance based on p-CuO/n-ZnO heterostructure. Journal of Materials Science: Materials in Electronics, 2016, 27, 1983-1987.	2.2	14
13	Enhancing performance of ZnO/NiO UV photodetector by piezo-phototronic effect. RSC Advances, 2016, 6, 48319-48323.	3.6	13
14	Growth of 3D branched ZnO nanowire for DC-type piezoelectric nanogenerators. Journal of Materials Science: Materials in Electronics, 2016, 27, 6708-6712.	2.2	11
15	Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes. Journal of Materials Science: Materials in Electronics, 2016, 27, 2342-2348.	2.2	19
16	ZnO nanorods array/BaTiO3 coating layer composite structure nanogenerator. Journal of Materials Science: Materials in Electronics, 2016, 27, 3773-3777.	2.2	7
17	Piezoelectric performance enhancement of ZnO flexible nanogenerator by a NiO–ZnO p–n junction formation. Nano Energy, 2015, 14, 95-101.	16.0	75
18	Piezoelectric effect of 3-D ZnO nanotetrapods. RSC Advances, 2015, 5, 11469-11474.	3.6	13

Yu Qiu

#	Article	IF	CITATIONS
19	Flexible piezoelectric nanogenerator based on Cu ₂ O–ZnO p–n junction for energy harvesting. RSC Advances, 2015, 5, 59458-59462.	3.6	25
20	Enhanced performance of ZnO piezoelectric nanogenerators by using Au-coated nanowire arrays as top electrode. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2001-2004.	1.8	3
21	Piezoelectric nanogenerator with 3D-ZnO micro-thornyballs prepared by chemical vapour deposition. Journal of Materials Science: Materials in Electronics, 2015, 26, 742-746.	2.2	11
22	Improving the quality of GaN epilayer by preparing a novel patterned sapphire substrate. Journal of Materials Science: Materials in Electronics, 2014, 25, 267-272.	2.2	1
23	Enhanced performance of wearable piezoelectric nanogenerator fabricated by two-step hydrothermal process. Applied Physics Letters, 2014, 104, .	3.3	18
24	Selective growth of GaN on slope cone-shaped patterned sapphire substrate. Chemical Research in Chinese Universities, 2014, 30, 556-559.	2.6	1
25	Controlled growth of ZnO nanorods on common paper substrate and their application for flexible piezoelectric nanogenerators. Journal of Materials Science: Materials in Electronics, 2014, 25, 2649-2656.	2.2	21
26	Low-frequency flexible piezoelectric nanogenerators based on ZnO nanorods grown on Cu wires. CrystEngComm, 2014, 16, 6831.	2.6	16
27	Piezoelectric effect of one-dimensional gear-shaped ZnO microwires. Applied Surface Science, 2014, 311, 621-625.	6.1	10
28	High density Si/ZnO core/shell nanowire arrays for photoelectrochemical water splitting. Journal of Materials Science: Materials in Electronics, 2013, 24, 3474-3480.	2.2	18
29	Improvement of the quality of GaN epilayer by combining a SiNx interlayer and changed GaN growth mode. Journal of Materials Science: Materials in Electronics, 2013, 24, 2716-2720.	2.2	5
30	Platinum nanoparticle decorated silicon nanowire arrays for photoelectrochemical hydrogen production. Journal of Materials Science: Materials in Electronics, 2013, 24, 4433-4438.	2.2	11
31	A novel ethanol gas sensor based on ZnO-microwire. Journal of Materials Science: Materials in Electronics, 2013, 24, 4812-4816.	2.2	8
32	Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates. Nanoscale, 2012, 4, 6568.	5.6	119
33	Photoluminescence and Raman analysis of ZnO microwires synthesized by chemical vapour deposition. , 2011, , .		Ο