David C Bassett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1037151/publications.pdf

Version: 2024-02-01

430754 454834 1,475 31 18 30 citations h-index g-index papers 31 31 31 2155 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials, 2008, 29, 944-953.	5.7	311
2	Biocompatibility of magnesium phosphate minerals and their stability under physiological conditions. Acta Biomaterialia, 2011, 7, 2678-2685.	4.1	145
3	Craniofacial vertical bone augmentation: A comparison between 3D printed monolithic monetite blocks and autologous onlay grafts in the rabbit. Biomaterials, 2009, 30, 6318-6326.	5.7	128
4	Resorption of monetite granules in alveolar bone defects in human patients. Biomaterials, 2010, 31, 2762-2769.	5.7	111
5	Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site. Biomaterials, 2014, 35, 5436-5445.	5.7	92
6	The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection. Biomaterials, 2008, 29, 3384-3392.	5.7	82
7	Collagen Biomineralization In Vivo by Sustained Release of Inorganic Phosphate Ions. Advanced Materials, 2010, 22, 1858-1862.	11.1	70
8	Versatile, cell and chip friendly method to gel alginate in microfluidic devices. Lab on A Chip, 2016, 16, 3718-3727.	3.1	63
9	Minimally invasive maxillofacial vertical bone augmentation using brushite based cements. Biomaterials, 2009, 30, 208-216.	5.7	61
10	Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materials. Acta Biomaterialia, 2015, 17, 1-15.	4.1	56
11	Competitive ligand exchange of crosslinking ions for ionotropic hydrogel formation. Journal of Materials Chemistry B, 2016, 4, 6175-6182.	2.9	38
12	Diagenesis-inspired reaction of magnesium ions with surface enamel mineral modifies properties of human teeth. Acta Biomaterialia, 2016, 37, 174-183.	4.1	30
13	Critical and diverse roles of phosphates in human bone formation. Journal of Materials Chemistry B, 2019, 7, 7460-7470.	2.9	30
14	Gelling kinetics and in situ mineralization of alginate hydrogels: A correlative spatiotemporal characterization toolbox. Acta Biomaterialia, 2016, 44, 243-253.	4.1	27
15	Stabilization of Amorphous Calcium Carbonate with Nanofibrillar Biopolymers. Advanced Functional Materials, 2012, 22, 3460-3469.	7.8	25
16	A correlative spatiotemporal microscale study of calcium phosphate formation and transformation within an alginate hydrogel matrix. Acta Biomaterialia, 2016, 44, 254-266.	4.1	25
17	Formation of Hydroxyapatite via Transformation of Amorphous Calcium Phosphate in the Presence of Alginate Additives. Crystal Growth and Design, 2019, 19, 7077-7087.	1.4	22
18	Nucleation and Growth of Brushite in the Presence of Alginate. Crystal Growth and Design, 2015, 15, 5397-5405.	1.4	20

#	Article	IF	CITATIONS
19	Perfluorodecalin and bone regeneration. , 2013, 25, 22-36.		20
20	Transformation of brushite to hydroxyapatite and effects of alginate additives. Journal of Crystal Growth, 2017, 468, 774-780.	0.7	19
21	Serum Protein Controlled Nanoparticle Synthesis. Advanced Functional Materials, 2011, 21, 2968-2977.	7.8	16
22	Local Structure of Ca2+ Alginate Hydrogels Gelled via Competitive Ligand Exchange and Measured by Small Angle X-ray Scattering. Gels, 2019, 5, 3.	2.1	16
23	Controlled mineralisation and recrystallisation of brushite within alginate hydrogels. Biomedical Materials (Bristol), 2016, 11, 015013.	1.7	13
24	Ultrasonic Phosphate Bonding of Nanoparticles. Advanced Materials, 2013, 25, 5953-5958.	11,1	11
25	Cortical bone screw fixation in ionically modified apatite cements. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 73B, 238-243.	1.6	10
26	The Role of the Airâ^'Liquid Interface in Protein-Mediated Biomineralization of Calcium Carbonate. Crystal Growth and Design, 2011, 11, 803-810.	1.4	9
27	A new class of bioactive glasses: Calcium–magnesium sulfophosphates. Journal of Biomedical Materials Research - Part A, 2014, 102, 2842-2848.	2.1	9
28	Modelling the central nervous system: tissue engineering of the cellular microenvironment. Emerging Topics in Life Sciences, 2021, 5, 507-517.	1.1	9
29	Letter to the Editor re "Characterization of alginate-brushite in-situ hydrogel composites― Materials Science and Engineering C, 2017, 70, 930-931.	3.8	3
30	Self-assembled photoactive heterojunction phase gradient. Journal of Materials Chemistry A, 2014, 2, 8868-8874.	5.2	2
31	Dissolution of copper mineral phases in biological fluids and the controlled release of copper ions from mineralized alginate hydrogels. Biomedical Materials (Bristol), 2015, 10, 015006.	1.7	2