
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1036983/publications.pdf Version: 2024-02-01

2.5

23

#	Article	IF	CITATIONS
1	Effects of Niobium Ions Released from Calcium Phosphate Invert Glasses Containing Nb ₂ O ₅ on Osteoblast-Like Cell Functions. ACS Applied Materials & Interfaces, 2012, 4, 5684-5690.	8.0	70
2	Preparation of Calcium Phosphate Films by Radiofrequency Magnetron Sputtering. Materials Transactions, 2005, 46, 2246-2252.	1.2	63
3	Precipitates in Biomedical Co-Cr Alloys. Jom, 2013, 65, 489-504.	1.9	61
4	Carbide Formation and Dissolution in Biomedical Co-Cr-Mo Alloys with Different Carbon Contents during Solution Treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2129-2138.	2.2	57
5	Fabrication of calcium phosphate films for coating on titanium substrates heated up to 773 K by RF magnetron sputtering and their evaluations. Biomedical Materials (Bristol), 2007, 2, S160-S166.	3.3	41
6	Synthesis and characterization of Ag-containing calcium phosphates with various Ca/P ratios. Materials Science and Engineering C, 2015, 53, 111-119.	7.3	36
7	In vitro performance of Ag-incorporated hydroxyapatite and its adhesive porous coatings deposited by electrostatic spraying. Materials Science and Engineering C, 2017, 77, 556-564.	7.3	36
8	Crystallographic orientation control of pure chromium via laser powder bed fusion and improved high temperature oxidation resistance. Additive Manufacturing, 2020, 36, 101624.	3.0	36
9	Evaluation of Calcium Phosphate Coating Films on Titanium Fabricated Using RF Magnetron Sputtering. Materials Transactions, 2007, 48, 307-312.	1.2	34
10	Structure and physicochemical properties of CaO–P2O5–Nb2O5–Na2O glasses. Journal of Non-Crystalline Solids, 2016, 432, 60-64.	3.1	34
11	Heterogeneous microstructures and corrosion resistance of biomedical Co-Cr-Mo alloy fabricated by electron beam melting (EBM). Additive Manufacturing, 2018, 24, 103-114.	3.0	32
12	In vitro evaluation of Ag-containing calcium phosphates: Effectiveness of Ag-incorporated Î ² -tricalcium phosphate. Materials Science and Engineering C, 2017, 75, 926-933.	7.3	31
13	Precipitates in As-Cast and Heat-Treated ASTM F75 Co-Cr-Mo-C Alloys Containing Si and/or Mn. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 1941-1949.	2.2	29
14	Co-Cr Alloys as Effective Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, 2015, , 157-178.	1.0	27
15	Anatase formation on titanium by two-step thermal oxidation. Journal of Materials Science, 2011, 46, 2998-3005.	3.7	24
16	Precipitates in Biomedical Co-28Cr-6Mo-(0–0.41)C Alloys Heat-Treated at 1473ÂK to 1623ÂK (1200°C to) 43, 3351-3358.	Tj ETQq0 (2.2	0 rgBT /Ove 24
17	Fabrication of Ag and Ta co-doped amorphous calcium phosphate coating films by radiofrequency magnetron sputtering and their antibacterial activity. Materials Science and Engineering C, 2020, 109, 110599.	7.3	24

18 NKG2D+ IFN-Î³+ CD8+ T Cells Are Responsible for Palladium Allergy. PLoS ONE, 2014, 9, e86810.

#	Article	IF	CITATIONS
19	Evaluation of Thin Amorphous Calcium Phosphate Coatings on Titanium Dental Implants Deposited Using Magnetron Sputtering. Implant Dentistry, 2014, 23, 343-350.	1.3	23
20	Corrosion resistance and mechanical properties of titanium nitride plating on orthodontic wires. Dental Materials Journal, 2018, 37, 286-292.	1.8	23
21	Structures and dissolution behaviors of MgO–CaO–P2O5–Nb2O5 glasses. Journal of Non-Crystalline Solids, 2016, 438, 18-25.	3.1	22
22	Experimental and theoretical study of the effect of Si on the oxidative behavior of Ti-6Al-4V alloys. Journal of Alloys and Compounds, 2019, 776, 519-528.	5.5	22
23	Microstructure and Mechanical Properties of Heat-Treated Co-20Cr-15W-10Ni Alloy for Biomedical Application. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2773-2782.	2.2	21
24	Overcoming the strength-ductility trade-off by the combination of static recrystallization and low-temperature heat-treatment in Co-Cr-W-Ni alloy for stent application. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138400.	5.6	21
25	Hydroxyapatite Formation on CaTiO ₃ Film Prepared by Metal-Organic Chemical Vapor Deposition. Materials Transactions, 2007, 48, 1505-1510.	1.2	20
26	Structures and dissolution behaviors of CaO–P2O5–TiO2/Nb2O5 (Ca/P ≥ 1) invert glasses. Journal of Non-Crystalline Solids, 2015, 426, 35-42.	3.1	20
27	Microstructural Changes During Plastic Deformation and Corrosion Properties of Biomedical Co-20Cr-15W-10Ni Alloy Heat-Treated at 873ÂK. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2393-2404.	2.2	18
28	Structure and dissolution behavior of MgO–P ₂ O ₅ –TiO ₂ /N (Mg/P ≥ 1) invert glasses. Journal of the Ceramic Society of Japan, 2015, 123, 942-948.	N b& lt;sub	& g1 ;2</su
29	Hydroxyapatite Formation on Ca-P-O Coating Prepared by MOCVD. Materials Transactions, 2008, 49, 1848-1852.	1.2	16
30	Calcium Phosphate Films with/without Heat Treatments Fabricated Using RF Magnetron Sputtering. Journal of Biomechanical Science and Engineering, 2009, 4, 392-403.	0.3	16
31	Synchronous improvement in strength and ductility of biomedical Co–Cr–Mo alloys by unique low-temperature heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 53-61.	5.6	16
32	Formation of TiO2 layers on commercially pure Ti and Ti–Mo and Ti–Nb alloys by two-step thermal oxidation and their photocatalytic activity. Applied Surface Science, 2015, 357, 2198-2205.	6.1	15
33	Preparation of Antibacterial ZnO-CaO-P ₂ O ₅ -Nb ₂ O _{5Invert Glasses. Materials Transactions, 2016, 57, 2072-2076.}	&gz,	15
34	Phase and Formation/Dissolution of Precipitates in Biomedical Co-Cr-Mo Alloys with Nitrogen Addition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 494-503.	2.2	14
35	Formation of Anatase on Commercially Pure Ti by Two-Step Thermal Oxidation Using N ₂ –CO Gas. Materials Transactions, 2013, 54, 1302-1307.	1.2	14
36	Changes in Microstructure of Biomedical Co-Cr-Mo Alloys during Aging at 973 to 1373 K. Materials Transactions, 2016, 57, 2048-2053.	1.2	14

#	Article	IF	CITATIONS
37	Effects of Mo Addition on the Mechanical Properties and Microstructures of Ti-Mn Alloys Fabricated by Metal Injection Molding for Biomedical Applications. Materials Transactions, 2017, 58, 271-279.	1.2	14
38	Precipitates in Biomedical Co-Cr-Mo-C-N-Si-Mn Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2125-2132.	2.2	13
39	Precipitates in Biomedical Co-Cr-Mo-C-Si-Mn Alloys. Advanced Materials Research, 0, 277, 51-58.	0.3	12
40	Preparation of calcium pyrophosphate glass-ceramics containing Nb ₂ O ₅ . Journal of the Ceramic Society of Japan, 2014, 122, 122-124.	1.1	12
41	Visibleâ€lightâ€responsive antibacterial activity of Auâ€incorporated TiO ₂ layers formed on Ti–(0–10)at%Au alloys by air oxidation. Journal of Biomedical Materials Research - Part A, 2019, 107, 991-1000.	4.0	12
42	Apatite formation behavior on bio-ceramic films prepared by MOCVD. Journal of the Ceramic Society of Japan, 2009, 117, 461-465.	1.1	11
43	Antibacterial activity of Ag nanoparticle-containing hydroxyapatite powders in simulated body fluids with Cl ions. Materials Chemistry and Physics, 2019, 223, 473-478.	4.0	11
44	Flexible and Tough Superelastic Co–Cr Alloys for Biomedical Applications. Advanced Materials, 2022, 34, e2202305.	21.0	11
45	Enhancement of nickel elution by lipopolysaccharide-induced inflammation. Journal of Dermatological Science, 2011, 62, 50-7.	1.9	10
46	TiO2 layers on Ti-Au alloy formed by two-step thermal oxidation and their photocatalytic activity in visible-light. Materials Letters, 2016, 185, 290-294.	2.6	10
47	Optimization of Microstructure and Mechanical Properties of Co–Cr–Mo Alloys by High-Pressure Torsion and Subsequent Short Annealing. Materials Transactions, 2016, 57, 1887-1896.	1.2	10
48	First principles study of oxidation of Si-segregated α-Ti(0001) surfaces. Japanese Journal of Applied Physics, 2017, 56, 125701.	1.5	10
49	TRAV7-2*02 Expressing CD8+ T Cells Are Responsible for Palladium Allergy. International Journal of Molecular Sciences, 2017, 18, 1162.	4.1	10
50	β-Grain Refinement of α+β-Type Ti–4.5Al–6Nb–2Fe–2Mo Alloy by Using Rare-Earth-Oxide Precipitates. Materials Transactions, 2013, 54, 161-168.	1.2	9
51	Heat Treatment of ASTM F75 Co-Cr-Mo-C-Si-Mn Alloys. Materials Science Forum, 0, 654-656, 2180-2183.	0.3	8
52	Effect of Ba deoxidation on oxygen content in NiTi alloys and non-metallic inclusions. Journal of Materials Science, 2013, 48, 359-366.	3.7	8
53	The antihistamine olopatadine regulates T cell activation in palladium allergy. International Immunopharmacology, 2016, 35, 70-76.	3.8	8
54	Effect of Si on the oxidation reaction of α-Ti(0 0 0 1) surface: <i>ab initio</i> molecular dynamics Science and Technology of Advanced Materials, 2017, 18, 998-1004.	study. 6.1	8

#	Article	IF	CITATIONS
55	Mechanisms of oxidation of pure and Si-segregated α-Ti surfaces. Applied Surface Science, 2019, 463, 686-692.	6.1	8
56	Effect of Precursor Deficiency Induced Ca/P Ratio on Antibacterial and Osteoblast Adhesion Properties of Ag-Incorporated Hydroxyapatite: Reducing Ag Toxicity. Materials, 2021, 14, 3158.	2.9	8
57	Precipitate Phases and Mechanical Properties of Heat-Treated ASTM F 90 Co-Cr-W-Ni Alloy. Key Engineering Materials, 0, 616, 258-262.	0.4	7
58	Using HAADF-STEM for atomic-scale evaluation of incorporation of antibacterial Ag atoms in a Î ² -tricalcium phosphate structure. Nanoscale, 2020, 12, 16596-16604.	5.6	7
59	Precipitation during Î ³ -ε Phase Transformation in Biomedical Co-Cr-Mo Alloys Fabricated by Electron Beam Melting. Metals, 2020, 10, 71.	2.3	7
60	Formation of carbon-added anatase-rich TiO2 layers on titanium and their antibacterial properties in visible light. Dental Materials, 2021, 37, e37-e46.	3.5	7
61	Improvement of Mechanical Properties by Microstructural Evolution of Biomedical Co–Cr–W–Ni Alloys with the Addition of Mn and Si. Materials Transactions, 2021, 62, 229-238.	1.2	7
62	Hydroxyapatite Formation on Calcium Phosphate Coated Titanium. Materials Science Forum, 2007, 561-565, 1513-1516.	0.3	6
63	Mass Loss and Ion Elution of Biomedical Co–Cr–Mo Alloys during Pin-on-Disk Wear Tests. Materials Transactions, 2013, 54, 1281-1287.	1.2	6
64	Microstructure and Mechanical Property of α+β Type Ti-(0~10)mass%V-(0.5~1)mass%O Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 80, 60-65.	0.4	6
65	Formation of the χ-Phase Precipitate in Co-28Cr-6Mo Alloys with Additional Si and C. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4342-4350.	2.2	6
66	Removal of Oxygen in Ti–Si Melts by Arc-Melting. Materials Transactions, 2017, 58, 613-618.	1.2	6
67	COX-2 induces T cell accumulation and IFN-γ production during the development of chromium allergy. Autoimmunity, 2019, 52, 228-234.	2.6	6
68	ï€-Phase and ï‡-Phase: New Precipitates in Biomedical Co–Cr–Mo Alloys. , 2012, , 72-80.		6
69	Hydroxyapatite Formation on MOCVD-CaTiO ₃ Coated Ti. Key Engineering Materials, 2007, 352, 301-304.	0.4	5
70	Precipitation Behavior in a Hanks' Solution on Ca-P-O Films Prepared by Laser CVD. Materials Transactions, 2009, 50, 2455-2459.	1.2	5
71	Microstructure and Mechanical Properties of an α+β Type Ti-4V-0.6O Alloy. Materials Transactions, 2017, 58, 1250-1256.	1.2	5
72	Deoxidation of Ti Melt by Newly Developed Two-Step Plasma Arc Melting Process Using Hydrogen. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 1553-1558.	2.1	5

#	Article	IF	CITATIONS
73	Effect of Nonmetallic Inclusions on Fatigue Properties of Superelastic Ti-Ni Fine Wire. Metals, 2019, 9, 999.	2.3	5
74	Calcium Phosphate Films Coated on Titanium by RF Magnetron Sputtering for Medical Applications. Materials Science Forum, 2007, 539-543, 551-556.	0.3	4
75	Fabrication and Evaluation of Calcium Phosphate Coating Films on Blast-treated Ti-6Al-4V Alloy Substrate. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2008, 55, 318-324.	0.2	4
76	Calcium Phosphate Coating on Blast-Treated Titanium Implants by RF Magnetron Sputtering. Materials Science Forum, 0, 631-632, 211-216.	0.3	4
77	Phase and Morphology of Carbides in ASTM F75 Co-Cr-Mo-C Alloys Formed at 1473 to 1623 K. Materials Science Forum, 0, 654-656, 2176-2179.	0.3	4
78	Formation of Photocatalytically Active TiO ₂ Layers on Ti–Nb Alloys by Two-Step Thermal Oxidation. Materials Transactions, 2019, 60, 1814-1820.	1.2	4
79	Development of Low-Yield Stress Co–Cr–W–Ni Alloy by Adding 6 Mass Pct Mn for Balloon-Expandable Stents. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4137-4145.	2.2	4
80	Wear Loss and Elution of C.P.Ti and Titanium Alloys in Simulated Body Fluids. Materials Science Forum, 2005, 475-479, 2333-2336.	0.3	3
81	Fatigue Behaviors of Ultra Fine Wires of β-Type and α-Type Titanium Alloys. Materials Transactions, 2009, 50, 1713-1719.	1.2	3
82	Preparation of orthophosphate glasses in the MgO–CaO–SiO2–Nb2O5–P2O5 system. Bio-Medical Materials and Engineering, 2017, 28, 23-30.	0.6	3
83	Electronegativity Difference as a Descriptor for the Oxidation-Inhibiting Effect of the Alloying Element during the Early Stages of Titanium Oxidation. Langmuir, 2022, 38, 1448-1457.	3.5	3
84	Development of dental and medical systems for reconstruction of human body with high performance titanium materials. International Congress Series, 2005, 1284, 324-325.	0.2	2
85	Preparation of Ca-Ti-O/Ca-P-O Functionally Graded Bio-ceramic Film by MOCVD. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2008, 55, 325-330.	0.2	2
86	Preparation of Functionally Graded Bio-Ceramic Film by MOCVD. Materials Science Forum, 2009, 631-632, 193-198.	0.3	2
87	Surface modification of titanium by pack cementation treatment using calcium phosphate powders for biomedical applications. Metals and Materials International, 2010, 16, 569-572.	3.4	2
88	Changes in Microstructure of Biomedical Co-Cr-Mo-C Alloys with Solution Treating and Aging. Advanced Materials Research, 0, 89-91, 377-382.	0.3	2
89	Evaluation of Photocatalytic Activity of the TiO2 Layer Formed on Ti by Thermal Oxidation. , 2015, , 65-78.		2
90	Effects of Precipitates and Albumin in Simulated Body Fluids on Pin-on-Disk Wear Behavior of Biomedical Co-Cr-Mo Alloys. Materials Transactions, 2016, 57, 2054-2059.	1.2	2

#	Article	IF	CITATIONS
91	Assessment of the release of nickel from biomaterials in vivo and in vitro: enhancement by lipopolysaccharide. Inflammation and Regeneration, 2011, 31, 302-306.	3.7	2
92	In Vitro Evaluation of RF Magnetron-Sputtered Calcium Phosphate Films on Titanium. Key Engineering Materials, 2007, 352, 305-309.	0.4	1
93	Fabrication and Evaluation of Multi-layered Calcium Phosphate Coating Film on Titanium. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2010, 57, 314-320.	0.2	1
94	Surface Improvement for Biocompatibility of Biomedical Ti Alloy by Dealloying in Metallic Melt. Springer Series in Biomaterials Science and Engineering, 2015, , 153-179.	1.0	1
95	Ceramic Coating of Ti and Its Alloys Using Dry Processes for Biomedical Applications. , 2017, , 23-34.		1
96	Fabrication and bioresorbability of Ag- and Ta-containing amorphous calcium phosphate films formed on titanium substrates by RF magnetron sputtering. MATEC Web of Conferences, 2020, 321, 05007.	0.2	1
97	Development of Ultrahigh Corrosion Resistant Metallic Materials ―Improvement of Corrosion Resistance of Martensitic Stainless Steel by Selective Laser Melting Process―. Materia Japan, 2020, 59, 679-684.	0.1	1
98	Antibacterial Functionalization of Ti-based Biomaterials Based on the Understanding of the Inactivation Mechanisms of Bacteria via Photocatalytic Activity of Titanium Oxide: Visible-light Responsive Reaction of Titanium Oxide Coating. Materia Japan, 2020, 59, 612-617.	0.1	1
99	Characterization of Calcium Phosphate Films Prepared by RF Magnetron Sputtering. Materials Research Society Symposia Proceedings, 2005, 888, 1.	0.1	0
100	Calcium Phosphate Coating on Titanium Using Dry Process. Materials Science Forum, 2010, 654-656, 2162-2167.	0.3	0
101	Pack Cementation Treatment of Titanium Using Tetracalcium Phosphate Powder for Biomedical Applications. Materials Science Forum, 2010, 654-656, 2172-2175.	0.3	0
102	Accelerated Bone Formation Around Titanium Dental Implants with Amorphous Calcium Phosphate Coating in Rabbits. , 2012, , 243-245.		0
103	Surface Modification of Titanium for Improvement of the Bone Compatibility by Bioresorbable Calcium Phosphate Coating. Materia Japan, 2012, 51, 424-427.	0.1	0
104	THE ROLE OF NIOBIUM IONS IN CALCIUM PHOSPHATE INVERT GLASSES FOR BONE REGENERATION. Phosphorus Research Bulletin, 2015, 30, 30-34.	0.6	0
105	Formation of Porous Layer with Low Ni Content on NiTi Substrate by Dealloying in Metallic Melts. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 766-770.	0.2	0
106	Improvement of Strength and Ductility by Combining Static Recrystallization and Unique Heat Treatment in Co-20Cr-15W-10Ni Alloy for Stent Application. Materials Science Forum, 0, 1016, 1503-1509.	0.3	0
107	Calcium Phosphate Coating on Titanium by RF Magnetron Sputtering. Advances in Bioinformatics and Biomedical Engineering Book Series, 0, , 223-233.	0.4	0
108	Antibacterial Surface Treatment of Titanium Alloys. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2021, 72, 616-621.	0.2	0