Jan-Olof Winberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1036409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zinc-Chelating Compounds as Inhibitors of Human and Bacterial Zinc Metalloproteases. Molecules, 2022, 27, 56.	3.8	3
2	Inhibition of bacterial and human zinc-metalloproteases by bisphosphonate- and catechol-containing compounds. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 819-830.	5.2	7
3	Molecular Interactions Stabilizing the Promatrix Metalloprotease-9·Serglycin Heteromer. International Journal of Molecular Sciences, 2020, 21, 4205.	4.1	2
4	Method for Determining Gelatinolytic Activity in Tissue: In Situ Gelatin Zymography. Methods in Molecular Biology, 2019, 1952, 193-199.	0.9	1
5	Method for Determining Gelatinolytic Activity in Tissue Extracts: Real-Time Gelatin Zymography. Methods in Molecular Biology, 2019, 1952, 201-210.	0.9	1
6	A Sensitive Assay for Proteases in Bioaerosol Samples: Characterization and Quantification of Airborne Proteases in Salmon Industry Work Environments. Annals of Work Exposures and Health, 2018, 62, 942-952.	1.4	4
7	The selectivity of galardin and an azasugar-based hydroxamate compound for human matrix metalloproteases and bacterial metalloproteases. PLoS ONE, 2018, 13, e0200237.	2.5	11
8	Cleavage of the urokinase receptor (uPAR) on oral cancer cells: regulation by transforming growth factor – β1 (TGF-β1) and potential effects on migration and invasion. BMC Cancer, 2017, 17, 350.	2.6	25
9	Inhibition of chemerin/CMKLR1 axis in neuroblastoma cells reduces clonogenicity and cell viability <i>in vitro</i> and impairs tumor growth <i>in vivo</i> . Oncotarget, 2017, 8, 95135-95151.	1.8	40
10	Synthesis, experimental evaluation and molecular modelling of hydroxamate derivatives as zinc metalloproteinase inhibitors. European Journal of Medicinal Chemistry, 2016, 108, 141-153.	5.5	13
11	Inhibition of pseudolysin and thermolysin by hydroxamate-based MMP inhibitors. European Journal of Medicinal Chemistry, 2015, 89, 340-348.	5.5	18
12	Tumour Microenvironments Induce Expression of Urokinase Plasminogen Activator Receptor (uPAR) and Concomitant Activation of Gelatinolytic Enzymes. PLoS ONE, 2014, 9, e105929.	2.5	10
13	PAC-1 and isatin derivatives are weak matrix metalloproteinase inhibitors. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3162-3169.	2.4	15
14	Salmon and king crab trypsin stimulate interleukin-8 and matrix metalloproteinases via protease-activated receptor-2 in the skin keratinocytic HaCaT cell line. Food and Chemical Toxicology, 2014, 69, 303-311.	3.6	8
15	Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumor Biology, 2013, 34, 2041-2051.	1.8	305
16	<i>InÂvitro</i> reconstitution of complexes between proâ€matrix metalloproteinaseâ€9 and the proteoglycans serglycin and versican. FEBS Journal, 2013, 280, 2870-2887.	4.7	40
17	Regulation of matrix metalloproteinase activity in health and disease. FEBS Journal, 2011, 278, 28-45.	4.7	313
18	Biosynthesis of Promatrix Metalloproteinase-9/Chondroitin Sulphate Proteoglycan Heteromer Involves a Rottlerin-Sensitive Pathway. PLoS ONE, 2011, 6, e20616.	2.5	7

JAN-OLOF WINBERG

#	Article	IF	CITATIONS
19	Gelatin In Situ Zymography on Fixed, Paraffin-embedded Tissue: Zinc and Ethanol Fixation Preserve Enzyme Activity. Journal of Histochemistry and Cytochemistry, 2010, 58, 29-39.	2.5	63
20	Biological and Pathobiological Functions of Gelatinase Dimers and Complexes. Connective Tissue Research, 2008, 49, 180-184.	2.3	47
21	Interaction of Pro-matrix Metalloproteinase-9/Proteoglycan Heteromer with Gelatin and Collagen. Journal of Biological Chemistry, 2008, 283, 13652-13665.	3.4	29
22	Pancreatic Trypsin Activates Human Promatrix Metalloproteinase-2. Journal of Molecular Biology, 2005, 350, 682-698.	4.2	26
23	S100A4 regulates membrane induced activation of matrix metalloproteinase-2 in osteosarcoma cells. Clinical and Experimental Metastasis, 2003, 20, 701-711.	3.3	55
24	Colchicine induces membrane-associated activation of matrix metalloproteinase-2 in osteosarcoma cells in an S100A4-independent manner. Biochemical Pharmacology, 2003, 66, 2341-2353.	4.4	21
25	Calcium-induced activation and truncation of promatrix metalloproteinase-9 linked to the core protein of chondroitin sulfate proteoglycans. FEBS Journal, 2003, 270, 3996-4007.	0.2	46
26	Macrophages Secrete Matrix Metalloproteinase 9 Covalently Linked to the Core Protein of Chondroitin Sulphate Proteoglycans. Journal of Molecular Biology, 2000, 304, 669-680.	4.2	79
27	Gelatinase Expression in Generalized Epidermolysis Bullosa Simplex Fibroblasts. Journal of Investigative Dermatology, 1986, 87, 326-329.	0.7	24